Skip to content

Repository for my research project on Inverse Contextual Bandits

Notifications You must be signed in to change notification settings

kasia-kobalczyk/invconban

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Evaluating Inverse Contextual Bandits against model-based inference

This repository contains the necessary code to replicate the results presented in my report 'Evaluating Inverse Contextual Bandits against model-based inference' based on an ICML 2022 paper 'Inverse Contextual Bandits: Learning How Behavior Evolves over Time'.

The original work of Alihan Hüyük et al. is available at this github repository.

My proposed modifiaction of the Bayesian ICB (B-ICB) for the optimistic and greedy policies are available in src/main-optimistic-bicb.py and src/main-greedy-bicb.py.

Main experimental results can be obtained by running

./run.sh
python src/main-mle-model-and-eval.py 
python src/optim-greedy-bicb.py 

Inference algorithms for the stationary, linear, stepping and regressing models together with their evaluation (part of Tables 1 and 2) are available in src/main-mle-model-and-eval.py

Ealuation of the original, optimistic and greedy versions of B-ICB (second part of Table 1 and 2, Figure 1, and Table 3) can be found in src/optim-greedy-bicb.py.

Note: In order to run the experiments access to semi-synthetic data as generated in the original paper is needed.

Releases

No releases published

Packages

No packages published