Skip to content

Latest commit

 

History

History
1004 lines (756 loc) · 15.6 KB

Equations.md

File metadata and controls

1004 lines (756 loc) · 15.6 KB

From: Kavishka Gihan

Electric Field

  1. Coulomb's law

$$ \begin{align*} F =\frac{1}{4\pi\epsilon}\frac{Q_1Q_2}{r^2} \end{align*} $$

  1. Relative Permittivity

$$ \begin{align*} Relative\ permitivity &= \frac{\epsilon}{\epsilon_0}\\ \epsilon_0 &= permivitity\ of\ vacuum \end{align*} $$

  1. Electric Field Intensity

$$ \begin{align*} \vec{E} =& \frac{1}{4\pi\epsilon}\frac{Q}{r^2} \end{align*} $$

  1. Force generated due to the electrical field intensity

$$ F = \vec{E}q $$

  1. Net electric flux (Gauss theorem)

$$ \begin{align*} \phi = \frac{Q}{\epsilon} \end{align*} $$

  1. Electric Flux Density (equates to electrical field intensity)

$$ \begin{align*} \phi &= \vec{E}A \end{align*} $$ $$ \begin{align*} \therefore \vec{E}A = \frac{Q}{\epsilon} \\ \ For\ a\ cylinder,\ \vec{E} &= \frac{1}{2\pi\epsilon}\frac{\lambda}{r} \ For\ a\ conducting\ plate,\ \vec{E} &= \frac{\sigma}{\epsilon} \ For\ an\ insulating\ plate,\ \vec{E} &= \frac{\sigma}{2\epsilon} \ For parallel\ plate\ capacitors,\ \vec{E} &= \frac{Q}{A\epsilon} \end{align*} $$

  1. Electric Potential

$$ \begin{align*} V &= \frac{1}{4\pi \epsilon} \frac{Q}{r} \\ V &= \vec{E}r \end{align*} $$

  1. Potential Difference

$$ \begin{align*} V_{AB} = \delta v =& \frac{Q}{4\pi \epsilon}(\frac{1}{a} - \frac{1}{b}) \end{align*} $$

  1. Electric Potential Energy (workdone)

$$ \begin{align*} E_{p} =&\ \delta vq \\ \end{align*} $$

  1. Potential gradient (equals to negative value of electric field intensity)

$$ \begin{align*} P_g = (\frac{\delta v}{ \delta d}) \end{align*} $$ $$ \vec{E} =-(\frac{\delta v}{ \delta d}) $$

  1. Static electric capacitance

$$ Q = CV_s $$ $$ \begin{align*} For\ spherical\ conductor, \\ C &= 4\pi\epsilon R \\ For\ parallel\ plate\ capacitors, \\ C &= \frac{A\epsilon}{d} \ Capacitors\ in\ series\ connection , \\ \frac{1}{C} &= \frac{1}{C_1} + \frac{1}{C_2} \ Capacitors\ in\ parallel\ connection, \\ C &= C_1 + C_2 \ Capacitror\ with\ 2\ dielectric\ media\ - in\ series, \\ C &= \frac{A \epsilon_1\epsilon_2}{d_1\epsilon_2 + d_2\epsilon_1} \ Capacitror\ with\ 2\ dielectric\ media\ - in\ parallel, \\ C &= \frac{A_1\epsilon_1 + A_2\epsilon_2}{d} \end{align*} $$

  1. Static electric potential energy

$$ \begin{align*} E_p = \frac{1}{2}V_sQ = \frac{1}{2}CV_s^2 = \frac{1}{2}\frac{Q^2}{V_s} \end{align*} $$

Gravitational Field

  1. Newtons Law of Gravitation

$$ F = \frac{Gm_1m_2}{r^2} $$

  1. Gravitational Field Intensity

$$ g = \frac{GM}{r^2} $$

  1. Gravitational Potential

$$ U = -\frac{GM}{r} $$

  1. Gravitational Potential Energy

$$ E_p = -mgr = Um $$

  1. Velocity of an artificial satellite

$$ v = \sqrt{\frac{GM}{r}} $$

  1. Angular velocity of an artificial satellite

$$ \omega = \sqrt{\frac{GM}{r^3}} $$

  1. Time period of an artificial satellite

$$ T = 2\pi\sqrt{\frac{r^3}{GM}} $$

  1. Total energy of an satellite

$$ \begin{align*} E_T &= E_k + E_p \\ E_T &= \frac{1}{2}m\frac{GM}{r}-\frac{GMm}{r} \\ E_T &= \frac{GMm}{r} \end{align*} $$

  1. Minimum energy

$$ E_{min} = GMm(\frac{1}{R} - \frac{1}{r}) $$

  1. Escape Velocity

$$ v_{esc} = \sqrt{\frac{2GM}{R}} $$

Heat

  1. Triple point of water

$$ 1 K = \frac{Temperature\ of\ triple\ point\ of\ water}{273.16} $$

  1. Solid Expansion

$$ \begin{align*}\delta l_2 =& l_1 ( 1 + \theta\alpha) \ \delta A_2 =& A_1 ( 1 + \theta\beta) \ \delta V_2 =& V_1 ( 1 + \theta\gamma) \ \end{align*} $$

  1. Liquid Expansion

$$ r = r_R + 3\alpha $$

  1. Density variation with temperature

$$ \begin{align*} \rho_2 =& \frac{\rho_1}{(1 + 3\alpha\theta)} \end{align*} $$

  1. Boyle's Law - Only for idea gasses

$$ P_1V_1 = P_2V_2 $$

  1. Charles's Law- Only for idea gasses

$$ \frac{V_1}{T_1} = \frac{V_2}{T_2} $$

  1. Volume expansion of gasses (Under constant pressure)

$$ \begin{align*} V =& V_o(1 + \gamma_p\theta) \to \gamma_p= 0.003^0C \end{align*} $$

  1. Pressure Law - Only for idea gasses

$$ \frac{P_1}{T_1} = \frac{P_2}{T_2} $$

  1. Combined gas equation

$$ \begin{align*} \frac{P_1V_1}{T_1} =& \frac{P_2V_2}{T_2} \end{align*} $$

  1. Ideal gas equation

$$ \begin{align*} PV &= nRT \ \\ Other\ forms,\\ PV &= \frac{m}{M}RT \\ \frac{P}{\rho} &= \frac{RT}{M} \end{align*} $$

  1. Avogadro Law - for any gass

$$ \begin{align*} \frac{V}{N} &= k \\ (N &= nL) \end{align*} $$

  1. Dalton's Law of partial pressure.

$$ P_T = P_A + P_B + P_C $$

  1. Kinetic theory equations (optional forms)

$$ \begin{align*} For\ a\ molecule,\\ PV &= \frac{1}{3}Nm_o\bar{c^2} \\ For\ a\ gass,\\ PV &= \frac{1}{3}m\bar{c^2}\\ P &= \frac{1}{3}\rho\bar{c^2} \end{align*} $$

  1. Relationship between root mean square and absolute temperature

$$ \begin{align*} c &= \sqrt{\frac{3RT}{M}} \end{align*} $$

  1. Kinetic energy of gas molecule

$$ \begin{align*} E_K &= (\frac{3}{2})(\frac{R}{L})T \ \ \frac{R}{L} =& Boltzman\ Constant (K) \ \ \therefore E_K &= \frac{3}{2}KT \end{align*} $$

  1. Relative Humidity

$$ \begin{align*} In\ terms\ of\ vapour\ density, \\ R.H &= \frac{\rho}{\rho_s} * 100 % \\ In\ terms\ of\ vapour\ mass (constant\ volume), \\ R.H &= \frac{m}{m_s} * 100 % \\ In\ terms\ of\ vapour\ pressure, \\ R.H &= \frac{P}{P_s} * 100 % \\ In\ terms\ of\ dew\ point, \\ R.H &= \frac{S.V.P\ @\ \theta_D}{S.V.P\ @\ \theta_R} = \frac{P_{SD}}{P_{SR}} * 100 % \\ In\ terms\ of\ absolute\ humidity, \\ R.H &= \frac{A.H\ @\ \theta_R}{A.H\ @\ \theta_D} = \frac{P_{R}}{P_{D}} * 100 % \\ \end{align*} $$

  1. Heat capacity

$$ H = C\theta $$

  1. Specific Heat Capacity

$$ H = mS\theta $$

  1. Molar Heat Capacity

$$ H = nC_0\theta $$

  1. Relationship between molar heat capacity and Molar mass

$$ C_o = MS $$

  1. Specific Latent Heat

$$ H = mL $$

  1. Relationship between Molar heat capacity under constant pressure and constant volume

$$ \begin{align*} C_p - C_v &= P\delta V \end{align*} $$

  1. Workdone by a gas

$$ \begin{align*} For\ a\ whole\ gas,\\ W &= P\delta V \\ For\ a\ 1\ mole\ of\ gas,\\ W_o &= C_p - C_v \end{align*} $$

  1. Relationship between Molar heat capacity under constant pressure, constant volume and universal gas constant

$$ C_p - C_v = R $$

  1. Relationship between specific heat capacity under constant pressure, constant volume and universal gas constant

$$ S_p - S_V = \frac{R}{M} $$

  1. Atomicity

$$ Atomicity (\gamma) = \frac{S_p}{S_v} =\frac{C_p}{C_v} $$

  1. First law of thermodynamics

$$ \begin{align*} \delta Q &= \delta U + \delta W \\\ When\ work\ is\ done\ by\ the\ gas, \\ \delta Q &= \delta U + \delta W \\ When\ work\ is\ done\ on\ the\ gas, \\ \delta Q &= \delta U - \delta W \end{align*} $$

  1. Thermodynamic processes

$$ \begin{align*} Isothermal\ process (\delta T = 0), \\ \delta Q &= \delta W \ &\to P_1V_1 = P_2V_2\\ Adiabatic\ process (\delta Q = 0), \\ \delta U &= - \delta W \\ \delta U &= - P\delta V \ &\to \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}\\ Isobaric\ process (\delta P= 0), \\ \delta Q &= \delta U + \delta W \ &\to \frac{V_1}{T_1} = \frac{V_2}{T_2}\\ Isochoric\ process (\delta V = 0), \\ \delta Q &= \delta U \ &\to \frac{P_1}{T_1} = \frac{P_2}{T_2}\\ \end{align*} $$

  1. PV curves

$$ \begin{align*} Area\ under\ the\ graph = Workdone = P\delta V \\ \\ Clockwise\ process \to +W\\ Anti-clockwise\ process \to -W\\ \end{align*} $$

  1. Excess Temperature

$$ \theta_E = \theta_S - \theta_R $$

  1. Rate of loosing heat

$$ \begin{align*} \frac{dH}{dt} &= KA(\theta_S - \theta_R) \end{align*} $$

  1. Rate of cooling

$$ \begin{align*} \frac{d\theta}{dt} &= \frac{KA}{mS}(\theta_S - \theta_R) \ \\ Rate\ of\ cooling &= \frac{Rate\ of\ loosing\ heat}{mS} \end{align*} $$

  1. Cooling Curve

$$ Gradient\ of\ the\ graph = Rate\ of\ Cooling = \frac{d\theta}{dt}\\ $$

Magnetic Field

  1. Magnetic Flux Density

$$ \begin{align*} B = \frac{\phi}{A} \end{align*} $$

  1. Force generated on a linear current carrying conductor placed in an magnetic field

$$ \begin{align*} F &= BILSin(\theta)\\\ B &\to Magnetic\ Flux\\ L &\to Length\ of\ the\ conductor\\ I &\to Current\\ \theta &\to angle\ with\ the\ horizontal \end{align*} $$

  1. Force generated of a square loop which carries current with number of turns

$$ \begin{align*} F &= BINACos(\theta)\\\ A &\to Area\\ N &\to Number\ of\ turns \end{align*} $$

  1. Current sensitivity of Ammeter

$$ \begin{align*} \frac{BNA}{k} &= \frac{\theta}{I} \end{align*} $$

  1. Voltage sensitivity of Ammeter

$$ \begin{align*} \frac{BNA}{kR} &= \frac{\theta}{V} \end{align*} $$

  1. Force on a charge particle moving in a magnetic field

$$ \begin{align*} F &= Bq\vec{u}Sin(\theta)\\\ q &\to charge\\ \vec{u} &\to drift\ velocity\\ \theta &\to angle\ with\ the\ horizontal\\ \end{align*} $$

  1. Bio-Savat laws

$$ \begin{align*} Around\ a\ straight\ coductor\ &with\ finite\ length\\ B &= \frac{\mu_o I}{4\pi r}(Sin(\alpha_1) + Sin(\alpha_2))\\\ Around\ a\ straight\ coductor\ &with\ infinite\ length\\ B &= \frac{\mu_o I}{2\pi r}\\\ At\ the\ center\ of\ &a\ circular\ loop\\ B &= \frac{\mu_o I}{2r}\\\ At\ the\ center\ of\ a\ circular\ &loop\ with\ N\ turns\\ B &= \frac{\mu_o IN}{2r}\\\ Through\ a\ solonoid\ &with\ N\ turns\\ B &= \mu_o IN\\\ \end{align*} $$

  1. Hall voltage

$$ \begin{align*} V_{H} = B\vec{u}d = \frac{BI}{ten}\\ \end{align*} $$

Current Electricity

  1. Current

$$ \begin{align*} I &= \frac{Q}{t} \ \end{align*} $$

  1. Current Density

$$ J = \frac{I}{A} $$

  1. Mean Drift Velocity

$$ \vec{u} = \frac{I}{Ane} $$

  1. Ohm's Law

$$ V = IR $$

  1. Electric Resistance

$$ R = \frac{\rho l}{A}\\ $$

  1. Conductivity

$$ C = \frac{1}{\rho} $$

  1. Resistance variation with temperature

$$ R = R_o(1 + \alpha \theta) $$

  1. Resistor networks

$$ \begin{align*} Series\ &network,\\ R &= R_1 + R_2 + R_3\\\ Parallel\ &network,\\ \frac{1}{R} &= \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \end{align*} $$

  1. Root-mean-square for current and voltage (Used in AC current)

$$ \begin{align*} V_s \to peak\ voltage\\ I_s \to peak\ current\\\ V_{r.m.s} = \frac{V_s}{\sqrt{2}}\\ I_{r.m.s} = \frac{I_s}{\sqrt{2}} \end{align*} $$

  1. Electrical Energy

$$ \begin{align*} E &= VQ = VIt = I^2Rt = \frac{V^2t}{R} \end{align*} $$

  1. Electric Power

$$ \begin{align*} P &= \frac{VQ}{t} = VI = I^2R = \frac{V^2}{R} \end{align*} $$

  1. Effective potential of a cell with internal resistance.

$$ \begin{align*} When\ current\ leaving\ (+)\ terminal,\\ V &= E - Ir\\\ When\ current\ is\ leaving\ (-)\ terminal,\\ V &= E + Ir\\\ \end{align*} $$

  1. Effective electromotive force of a cell network

$$ \begin{align*} Series\ Network,\\ E &= E_1 + E_2 + E_3\\ r &= r_1 + r_2 + r_3\ (internal\ resistance) \\\ Parallel\ Network,\\ \frac{E}{r} &= \frac{E_1}{r_1} + \frac{E_2}{r_2} + \frac{E_3}{r_3} \end{align*} $$

  1. Kirchhoff's laws

$$ \begin{align*} KCL,\\ \Sigma I_{in} &= \Sigma I_{out}\\\ KVL,\\ \Sigma E &= \Sigma IR \end{align*} $$

  1. Energy concept of a simple cell.

$$ \begin{align*} Power\ of\ cell &= Total\ power\ of\ resistors \end{align*} $$

  1. Efficiency of a circuit. (Maximum power is given when r = R)

$$ \begin{align*} <<<<<<< HEAD Efficiency &= \frac{Power\ of\ external\ resistance}{Power\ of\ cell}*100 % \\ \eta &= \frac{R}{R+r}*100 %

Efficiency &= \frac{Power\ of\ external\ resistance}{Power\ of\ cell} * 100 % \\ \eta &= \frac{R}{R+r} * 100 % \

d531fd232cdbf4528d1cca8644bf3e5f53c98f0e \end{align*} $$

  1. Wheatstone bridge

$$ \begin{align*} \frac{R_1}{R_2} = \frac{R_3}{R_4} \end{align*} $$

  1. Meter Bridge

$$ \begin{align*} l \to& balance\ length\ \\ \frac{R_1}{R_2} &= \frac{l}{100 - l} \end{align*} $$

  1. Potentiometer

$$ \begin{align*} l \to& balance\ length\\ K \to& Potential\ Gradient\\\ E &= Kl\\ K &= \frac{IR}{l} \end{align*} $$

Matter and Radiation

  1. Speed of an electromagnetic wave

$$ \begin{align*} \epsilon \to Permitivity\\ \mu \to Permiability\ \\ C = \frac{1}{\sqrt{\epsilon \mu}} \end{align*} $$

  1. Surface emissivity

$$ \begin{align*} e &= \frac{Total\ energy\ emitted\ by\ a\ surface}{Energy\ emitted\ by\ a\ black\ body\ with\ same\ surface\ area} \\\ &For\ black\ body \to e = 1 \end{align*} $$

  1. Surface absorptivity

$$ \begin{align*} a &= \frac{Energy\ absorbed\ by\ a\ surface}{Energy\ falls\ on\ that\ surface}\\ \\ &For\ black\ body \to a = 1 \end{align*} $$

  1. Intensity of sound

$$ \begin{align*} I &= \frac{E}{At} \end{align*} $$

  1. Stefan's Law

$$ \begin{align*} I &= \sigma T^4\\ E &= eAt\sigma T^4\\ For\ black\ &body \to E = At\sigma T^4 \end{align*} $$

  1. Wien's Displacement Law

$$ \begin{align*} C \to Wien's\ Constant\\ \frac{1}{\lambda_m} \propto T\\ \\ C = \lambda_m T \end{align*} $$

  1. Planck-Einstein relation

$$ \begin{align*} h \to &Planck's\ constant \\\ E &= hf \end{align*} $$

  1. Photoelectric effect

$$ \begin{align*} I_{max} \propto& Intensity\\ V_{s} \propto& frequency\\ \\ Intensity &= \frac{ne}{t} \end{align*} $$

  1. Einstein's Hypothesis on photoelectric effect

$$ \begin{align*} \phi \to &work\ function\\ f_o \to &threshhold\ frequency\\ e \to &charge\ of\ an\ electron\\ V_s \to &Stop\ potential\\\ hf &= \phi + K.E_{max} \\ hf &= hf_o + \frac{1}{2}mv^2 \ \\ hf &= hf_o + eV_s \end{align*} $$

  1. Work function

$$ \begin{align*} c \to& Speed\ of\ light \\ \phi &= \frac{hc}{\lambda} \end{align*} $$

  1. De Broglie Wave length

$$ \begin{align*} p \to& momentum \\\ \lambda &= \frac{h}{p} \end{align*} $$

  1. X-ray tube (work done to move a charge b/w terminals)

$$ \begin{align*} eV = hf \end{align*} $$

  1. $\alpha$ decay

$$ \begin{align*} \alpha\ &particle \to ^4_2\alpha \\\ ^b_aX \to& ^{(b-4)}_{(a-2)}Y +\ ^4_2\alpha + Energy \end{align*} $$

  1. $\beta^{-}$ decay

$$ \begin{align*} \beta^{-}\ & particle \to ^0_{-1}\beta \ \vec{V_e} \to& Anti - electro\ neutrino\\ ^b_aX \to& ^{(b)}{(a+1)}Y +\ ^{0}{-1}\beta + \vec{V_e} \\ 1\ neutron\ &converts\ to\ 1\ proton \end{align*} $$

  1. $\beta^{+}$ decay

$$ \begin{align*} \beta^{+}\ &particle \to ^0_{+1}\beta \ V_e \to& electro\ neutrino\\ ^b_aX \to& ^{(b)}{(a-1)}Y +\ ^{0}{1}\beta + V_e \\ 1\ proton\ &converts\ to\ 1\ neutron \end{align*} $$

  1. Rate of disintegration

$$ \begin{align*} \frac{dN}{dt} &= -\lambda N\\ N &= N_oe^{-\lambda t} \end{align*} $$

  1. Activity of radioactive sample

$$ \begin{align*} A &= \lambda N \end{align*} $$

  1. Half life of an atom

$$ \begin{align*} T\frac{1}{2} = \frac{0.7}{\lambda} \end{align*} $$

Elasticity

  1. Stress

$$ \begin{align*} \sigma = \frac{F}{A} \end{align*} $$

  1. Strain

$$ \begin{align*} \epsilon = \frac{e}{l} \end{align*} $$

  1. Hook's Law

$$ \begin{align*} \gamma = \frac{Stres}{Strain} &= \frac{\sigma}{\epsilon}\\\ \frac{F}{A} &= \gamma\frac{e}{l} \end{align*} $$

  1. Elastic Strain Energy

$$ \begin{align*} E_o &= \frac{1}{2} * Tension * Extension\\\ E_o &= \frac{1}{2} * Stress * Strain\\ \end{align*} $$

  1. Force on a rod when expansion or compression is prevented

$$ \begin{align*} F = \gamma A \alpha (\delta\theta) \end{align*} $$

Viscosity

  1. Newtons Law of viscosity (viscose b/w 2 liquid layers moving at v1 and v2)

$$ \begin{align*} F &= \eta A \frac{(v_1 - v_2)}{d}\\\ \eta &\to coefficient\ of\ viscosity\\ \end{align*} $$

  1. Stock's Law (viscose force on a spherical object with radius r and speed v)

$$ \begin{align*} F = 6\pi r \eta v \end{align*} $$

  1. Acceleration of a small spherical object falling in a liquid medium

$$ \begin{align*} &\frac{(\sigma -\rho)g}{\sigma} - \frac{9\eta v}{2r^2 \sigma} = a\\\ r &\to radius\ of\ the\ sphere\\ \sigma &\to density\ of\ the\ sphere\\ \rho &\to density\ of\ the\ liquid\\ v &\to velocity\ of\ the\ sphere\\ \end{align*} $$

  1. Terminal Velocity

$$ \begin{align*} v = \frac{2r^2g(\sigma - \rho)}{9\eta} \end{align*} $$

  1. Poiseuille's Equation (Rate of volume flow through a steady flow of fluid)

$$ \begin{align*} \frac{v}{t} = \frac{\pi}{8}\frac{\delta P}{l}\frac{r^4}{\eta} \end{align*} $$