-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelReplication.py
159 lines (138 loc) · 5.12 KB
/
modelReplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from multiprocessing.pool import RUN
from modules.Evolution import Evolution
from modules.HTMLPage import Page
import pickle
from multiprocessing import Pool
'''
This script attempts to follow replicate the results from the following paper: https://www.nature.com/articles/srep01069
Uses multiprocessing
'''
# declare amount of runs to average
RUNS = 1
index = 0
def runSimulation(simulationObj):
'''
Function will be passed to pool to map the different processes
simulationObj must contain the following parameters:
{
'Pn': float
'Pw': float
'Pd': float
'newAuthors' or 'newPapers': int
'simulationName': str
}
'''
print(f'Starting simulation ' + simulationObj['simulationName'])
model = Evolution(Pn=simulationObj['Pn'], Pw=simulationObj['Pw'], Pd=simulationObj['Pd'])
if 'newPapers' in simulationObj:
model.evolve(newPapers=simulationObj['newPapers'])
else:
model.evolve(newAuthors=simulationObj['newAuthors'])
model.plotCreditDistr(saveToFile='outputs/' + simulationObj['simulationName'] + '-' + str(simulationObj['index']))
print(f'Done with simulation ' + simulationObj['simulationName'])
return model.getQuantDistr(), model.getNumAuthors(), model.getNumPapers(), model.getNumTopics(), model.getDegreeDistribution(), model.getCreditDistribution(), model.getDisciplineTypeDistribution(), simulationObj
def getData(simData):
'''
Function will aggragate all the data from the different runs
'''
descr = {
'Ap': [],
'Pa': [],
'Ad': [],
'Da': [],
'Pd': [],
'Dp': []
}
sumAuths = 0
sumPaps = 0
sumTops = 0
degreeDistrib = []
creditDistr = {}
disciplineTypeDistribs = [{}, {}]
for des, numAuths, numPaps, numTops, deg, credit, disciplineTypeObj, simObj in simData:
for key, vals in des.items():
descr[key].extend(vals)
sumAuths += numAuths
sumPaps += numPaps
sumTops += numTops
degreeDistrib.extend(deg)
# append credit to distributions in dict
for key, val in credit.items():
if key not in creditDistr:
creditDistr[key] = []
creditDistr[key].extend(val)
# append displineType objects
for i, distribution in enumerate(disciplineTypeObj):
for key, val in distribution.items():
if key not in disciplineTypeDistribs[i]:
disciplineTypeDistribs[i][key] = []
disciplineTypeDistribs[i][key].extend(val)
return descr, sumAuths//len(simData), sumPaps//len(simData), sumTops//len(simData), degreeDistrib, creditDistr, disciplineTypeDistribs, simObj
def saveToFile(fileName, descr, numAuthors, numPapers, numTopics):
'''
Function used to save data to pickle file
'''
with open(fileName, 'wb') as outfile:
pickle.dump({
'descr': descr,
'numAuthors': numAuthors,
'numPapers': numPapers,
'numTopics': numTopics
}, outfile)
def saveResults(simName, simData):
'''
Function used to save outputs to html file and pickle file
'''
htmlPage = Page()
descr, numAuths, numPaps, numTops, degreeDistrib, creditDistr, disciplineObj, simObj = getData(simData)
saveToFile(fileName=f'outputs/{simName}Data.pi', descr=descr, numAuthors=numAuths, numPapers=numPaps, numTopics=numTops)
htmlPage.writeHTMLPage(simName=simName, descr=descr, creditDistr=creditDistr, degreeDistrib=degreeDistrib, displineTypeObj=disciplineObj, numAuths=numAuths, numPaps=numPaps,
numTops=numTops, numTypes=2, Pn=simObj['Pn'], Pw=simObj['Pw'], Pd=simObj['Pd'], numRuns=simObj['runs'], directory='./docs/outputs/')
if __name__ == "__main__":
# Declare the simulation objects
nanobank = {
'Pn': 0.90,
'Pw': 0.28,
'Pd': 0.0,
'newPapers': int(102),
# 'newPapers': int(2.9*10**5),
'simulationName': 'Nanobank',
'runs': RUNS
}
scholarometer = {
'Pn': 0.04,
'Pw': 0.35,
'Pd': 0.01,
'newAuthors': int(500),
# 'newAuthors': int(2.2*10**4),
'simulationName': 'Scholarometer',
'runs': RUNS
}
bibsonomy = {
'Pn': 0.80,
'Pw': 0.71,
'Pd': 0.50,
'newPapers': int(1000),
# 'newPapers': int(2.9*10**5),
'simulationName': 'Bibsonomy',
'runs': RUNS
}
# declare multiprocessing
pool = Pool(RUNS * 3)
# create simulations object
simulations = []
for i in range(RUNS):
simulations.append({**nanobank, **{ 'index': i }})
for i in range(RUNS):
simulations.append({**scholarometer, **{ 'index': i }})
for i in range(RUNS):
simulations.append({**bibsonomy, **{ 'index': i }})
data = pool.map(runSimulation, simulations)
pool.close()
data = list(data)
# get nanobank results and save
saveResults('nanobankCredit', data[:RUNS])
# get scholarometer results and save
saveResults('scholarometerCredit', data[RUNS:2*RUNS])
# get bibsonomy results
saveResults('bibsonomyCredit', data[2*RUNS:])