forked from weixi-feng/LayoutGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_spatial_layout.py
82 lines (66 loc) · 2.87 KB
/
eval_spatial_layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from collections import defaultdict
import difflib
import os
import argparse
import pdb
import random
import cssutils
from tqdm import tqdm
from utils import *
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--file", type=str)
args = parser.parse_args()
ref_file = load_json("dataset/NSR-1K/spatial/spatial.val.json")
ref_file = {x['id']: x for x in ref_file}
fname = args.files
basename = os.path.basename(fname)
dirname = os.path.dirname(fname)
assert "raw" not in basename
responses = load_json(fname)
n_correct = defaultdict(lambda: 0)
n_miss = defaultdict(lambda: 0)
n_type = defaultdict(lambda: 0)
print(f"Evaluating {basename}")
for r in tqdm(responses):
try:
ref_sample = ref_file[int(r['query_id'])]
except:
ref_sample = ref_file[int(r['id'])]
ref_relation = ref_sample['relation']
obj1, _ = ref_sample['obj1']
obj2, _ = ref_sample['obj2']
prompt_type = ref_sample['type']
n_type[prompt_type] += 1
pred_objects = [obj for obj in r['object_list'] if obj[1] != [0]*4 and obj[0] != None]
all_objects = [pred_obj[0] for pred_obj in pred_objects]
close_obj1 = difflib.get_close_matches(obj1, all_objects)[:1]
pred_bbox1 = [obj[1] for i, obj in enumerate(pred_objects) if obj[0] in close_obj1]
if len(pred_bbox1) == 0:
n_miss[prompt_type] += 1
continue
close_obj2 = difflib.get_close_matches(obj2, all_objects)[:1]
pred_bbox2 = [obj[1] for i, obj in enumerate(pred_objects) if obj[0] in close_obj2]
if len(pred_bbox2) == 0:
n_miss[prompt_type] += 1
continue
all_relations = [eval_spatial_relation(b1, b2) for b1 in pred_bbox1 for b2 in pred_bbox2]
if ref_relation in all_relations:
n_correct[prompt_type] += 1
else:
if ref_relation == 'next to' and ('left' in all_relations or 'right' in all_relations):
n_correct[prompt_type] += 1
else:
pass
for prompt_type in n_correct.keys():
print(f'{basename} {prompt_type} (#eg: {n_type[prompt_type]})')
acc = n_correct[prompt_type]/n_type[prompt_type]
score_info = {'acc': acc, 'n_miss': n_miss[prompt_type]}
print(f'\tAcc = {acc*100:.2f} %, #miss = {n_miss[prompt_type]}')
# save output
args.output_dir = os.path.join('./eval_score/spatial/')
os.makedirs(args.output_dir, exist_ok=True)
output_filename = os.path.join(args.output_dir, 'layout_eval.'+basename)
with open(output_filename, 'w') as fout:
json.dump(score_info, fout)
print("{}, Overall, acc: {:.4f}, missing: {}".format(basename, sum(n_correct.values())/len(responses), sum(n_miss.values())))