Skip to content
This repository has been archived by the owner on Jul 18, 2023. It is now read-only.
/ ga-to-gbq Public archive

Load free Google Analytics data into Goolge Big Query

License

Notifications You must be signed in to change notification settings

kemsakurai/ga-to-gbq

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ga-to-gbq

Load free Google Analytics data into Goolge Big Query.
It is designed to run as a cronjob on a Linux server.


Install

This tool works with Python3. You can use the tool by cloning the repository and installing the library with the pip command. When installing on a virtual environment such as venv, it is necessary to create the environment and switch to the virtual environment before executing the following command.

Prerequisites

The Tool requires two service account keys. One is a Google Analytics service account and the other is a Google Cloud Storage and Big Query service account. You can specify different keys for each, You can also reuse a single key file, assuming you give the account permissions.

Git clone and install libraries

git clone https://github.com/kemsakurai/ga-to-gbq.git    
cd ga-to-gbq
pip install -r requirements.txt

Command usage

  • job list
export FLASK_APP=cli
flask job 
Usage: flask job [OPTIONS] COMMAND [ARGS]...

Options:
  --help  Show this message and exit.

Commands:
  compress_gcs_data  Compress data uploaded Google Cloud Storage to gzip
  load_to_gbq        Load to Google Big Query from Google Cloud Storage
  merge_data_to_gcs  Merge database data and upload Google Cloud Storage
  save_ga            Save Google Anlaytics data in the database

Outputs a list of commands.

  • save_ga
export FLASK_APP=cli
DATE="2020-05-18"
VIEW_ID="10xxxxxxx"
GA_CREDENTIALS_PATH=".ga_client.json"
flask job save_ga "$DATE" "$VIEW_ID" "$GA_CREDENTIALS_PATH"

Store Google analytics data in the sqlite database. Since the API of Gooogle Analytics has a limit on the number of dimensions and metrics that can be output, execute the API multiple times and save each in a table.

  • merge_data_to_gcs
export GOOGLE_APPLICATION_CREDENTIALS=./credentials.json
export FLASK_APP=cli
DATE="2020-05-18"
BUCKET_NAME="monotalk.appspot.com"
FILE_DIR_NAME="GA Statistics/www.monotalk.xyz/"
flask job merge_data_to_gcs "$DATE" "$BUCKET_NAME" "$FILE_DIR_NAME"

The data saved with the save_ga command is merged into one, and the merged result is uploaded to Google Cloud Storage. The file is uploaded in JSON format.

  • load_to_gbq
export GOOGLE_APPLICATION_CREDENTIALS=./credentials.json
export FLASK_APP=cli
DATE="2020-05-18"
DATA_SET_ID="monotalk.GA_Statistics"
GCS_DIR="gs://monotalk.appspot.com/GA Statistics/www.monotalk.xyz/"
flask job load_to_gbq "$DATE" "$DATA_SET_ID" "$GCS_DIR"

Load the JSON file uploaded to Google Cloud Storage into Google BigQuery.

  • compress_gcs_data
export GOOGLE_APPLICATION_CREDENTIALS=./credentials.json
export FLASK_APP=cli
DATE="2020-05-18"
BUCKET_NAME="monotalk.appspot.com"
FILE_DIR_NAME="GA Statistics/www.monotalk.xyz/"
flask job compress_gcs_data "$DATE" "$BUCKET_NAME" "$FILE_DIR_NAME"

Compress the JSON file uploaded to Google Cloud Storage into gzip. A new compressed gzip file will be uploaded and the original JSON file will be deleted.


Command execution order

Execute the commands on a daily basis in the following order. Data of Google Analytics may not be acquired if specified on the day. We recommend that you specify a date that is at least one day in advance and execute it.

  1. save_ga
  2. merge_data_to_gcs
  3. load_to_gbq
  4. compress_gcs_data

Job Scheduling EXAMPLES

This is an example of a script that executes a Python job and a cron job that uses that script.

  • run_ga_to_gbq.sh
#!/bin/bash

shellName=$(basename $0)
homeDir=$(pwd)
toolHome="/home/jobuser/tools/ga-to-gbq"

prepareRun() {
  cd $toolHome
  source /home/jobuser/venv/ga_to_gbq/bin/activate
  export FLASK_APP=cli
  export GOOGLE_APPLICATION_CREDENTIALS=./credentials.json
}

getTreeDaysAgo() {
  if [ "$(uname)" == 'Darwin' ]; then
    DATE=`date -v-3d +'%Y-%m-%d'`
  elif [ "$(expr substr $(uname -s) 1 5)" == 'Linux' ]; then
    DATE=`date '+%Y-%m-%d' --date '3 days ago'`
  elif [ "$(expr substr $(uname -s) 1 10)" == 'MINGW32_NT' ]; then
    DATE=`date '+%Y-%m-%d' --date '3 days ago'`
  else
    echo "Your platform ($(uname -a)) is not supported."
    exit 1
  fi
  echo $DATE
}

sub_help(){
    echo "Usage: $shellName <subcommand> [options]\n"
    echo "Subcommands:"
    echo "    saveGa    Save Google Analytics data to SQLite database."
    echo "    mergeDataToGcs Merge SQLite data and upload to Google Cloud Storage."
    echo "    loadToGbq Load data to Google Big Query from Google Cloud Storage."
    echo "    compressGcsData Compress data uploaded Google Cloud Storage to gzip."
    echo ""
    echo "For help with each subcommand run:"
    echo "$shellName <subcommand> -h|--help"
    echo ""
}

sub_loadToGbq() {
  prepareRun
  DATE=`getTreeDaysAgo`
  DATA_SET_ID="monotalk-analytics.GA_Statistics"
  GCS_DIR="gs://monotalk.appspot.com/GA Statistics/www.monotalk.xyz/"
  flask job load_to_gbq \
  "$DATE" \
  "$DATA_SET_ID" \
  "$GCS_DIR"

}

sub_mergeDataToGcs() {
  prepareRun
  DATE=`getTreeDaysAgo`
  BUCKET_NAME="monotalk-analytics.com"
  FILE_DIR_NAME="GA Statistics/www.monotalk.xyz/"
  flask job merge_data_to_gcs \
  "$DATE" \
  "$BUCKET_NAME" \
  "$FILE_DIR_NAME"
}

sub_saveGa() {
  prepareRun
  rm -f ga.db
  DATE=`getTreeDaysAgo`
  VIEW_ID="YOUR_VIEW_ID"
  GA_CREDENTIALS_PATH="./ga_client.json"
  flask job save_ga \
  "$DATE" \
  "$VIEW_ID" \
  "$GA_CREDENTIALS_PATH"
}

sub_compressGcsData() {
  prepareRun
  DATE=`getTreeDaysAgo`
  BUCKET_NAME="monotalk-analytics.appspot.com"
  FILE_DIR_NAME="GA Statistics/www.monotalk.xyz/"
  flask job compress_gcs_data \
  "$DATE" \
  "$BUCKET_NAME" \
  "$FILE_DIR_NAME"
}

for subcommand in "$@"; do
    case $subcommand in
        "" | "-h" | "--help")
            sub_help
            ;;
        *)
            shift
            sub_${subcommand} $@
            returnCode=$?
            if [ $returnCode = 127 ]; then
                echo "Error: '$subcommand' is not a known subcommand." >&2
                echo "       Run '$shellName --help' for a list of known subcommands." >&2
                exit 1
            elif [ $returnCode = 1 ]; then
                echo "Error: '$subcommand' is failed.." >&2
                exit 1            
            fi
            ;;
    esac
done
  • crontab
# coomon settings
MAILTO="your.mail@example.com"
MAILFROM="error-notifications@example.com"
LOG_DIR="/var/log"
# gsc-to-gbq
SH_GSC_TO_GBQ="/home/jobuser/scripts/run_gsc_to_gbq.sh"

00 02 * * * /bin/sh $SH_GA_TO_GBQ saveGa &>> $LOG_DIR/ga_to_gbq_saveGa.log && /bin/sh $SH_GA_TO_GBQ mergeDataToGcs &>> $LOG_DIR/ga_to_gbq_mergeDataToGcs.log && /bin/sh $SH_GA_TO_GBQ loadToGbq &>> $LOG_DIR/ga_to_gbq_loadToGbq.log && /bin/sh $SH_GA_TO_GBQ compressGcsData &>> $LOG_DIR/ga_to_gbq_compressGcsData.log

LICENSE

MIT

About

Load free Google Analytics data into Goolge Big Query

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages