-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_full_rl.py
422 lines (363 loc) · 17.2 KB
/
train_full_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
""" full training (train rnn-ext + abs + RL) """
import argparse
import json
import pickle as pkl
import os
from os.path import join, exists
from itertools import cycle
import sys
from toolz.sandbox.core import unzip
from cytoolz import identity, concat
import torch
from torch import optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader, Dataset
from utils import count_data
import pickle
from data.data import CnnDmDataset
from data.batcher import tokenize
from model.rl import ActorCritic, ActorCriticCand, ActorCriticSentBertCand, ActorCriticSentWordBertCand
from model.extract import PtrExtractSumm, PtrExtractRewrittenSumm, PtrExtractRewrittenBertSumm, PtrExtractRewrittenSentBertSumm, PtrExtractRewrittenSentWordBertSumm
from training import BasicTrainer
from rl import get_grad_fn
from rl import A2CPipeline
from decoding import load_best_ckpt
from decoding import Abstractor, ArticleBatcher, ConditionalAbstractor
from metric import compute_rouge_l, compute_rouge_l_summ, compute_rouge_n, compute_weighted_rouge_1_2
import random
import numpy as np
MAX_ABS_LEN = 30
try:
DATA_DIR = os.environ['DATA']
except KeyError:
print('please use environment variable to specify data directories')
class RLDataset(CnnDmDataset):
""" get the article sentences only (for decoding use)"""
def __init__(self, split):
super().__init__(split, DATA_DIR)
def __getitem__(self, i):
js_data = super().__getitem__(i)
art_sents = js_data['article']
abs_sents = js_data['abstract']
return art_sents, abs_sents
class RLDataset_backup(Dataset):
def __init__(self, split):
split_dir = os.path.join(DATA_DIR, split)
cached_features_file = os.path.join(DATA_DIR, 'cached_' + split)
if os.path.exists(cached_features_file):
print("Loading features from cached file %s", cached_features_file)
with open(cached_features_file, 'rb') as handle:
self.examples = pickle.load(handle)
else:
print("Creating features from dataset file at %s", DATA_DIR)
self.examples = []
n_data = count_data(split_dir)
for i in range(n_data):
js = json.load(open(join(split_dir, '{}.json'.format(i))))
if js['article'] and js['abstract']:
doc_sent_list = js['article']
summary_sent_list = js['abstract']
self.examples.append( (doc_sent_list, summary_sent_list) )
print("Saving features into cached file %s", cached_features_file)
with open(cached_features_file, 'wb') as handle:
pickle.dump(self.examples, handle, protocol=4)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return self.examples[item]
def load_ext_net(ext_dir, ext_type):
ext_meta = json.load(open(join(ext_dir, 'meta.json')))
#assert ext_meta['net'] == 'ml_rnn_extractor'
assert 'ml_{}_extractor'.format(ext_type) == ext_meta['net']
ext_ckpt = load_best_ckpt(ext_dir)
print("finish load chkpt")
#if '_extractor._stop' not in ext_ckpt:
# ext_ckpt['_extractor._stop'] = torch.zeros_like(ext_ckpt['_extractor._init_i'])
ext_args = ext_meta['net_args']
vocab = pkl.load(open(join(ext_dir, 'vocab.pkl'), 'rb'))
print("finish load vocab")
if ext_type == "rewritten_rnn":
ext = PtrExtractRewrittenSumm(**ext_args)
elif ext_type == "rewritten_bert_rnn":
ext = PtrExtractRewrittenBertSumm(**ext_args)
elif ext_type == "rewritten_sent_bert_rnn":
ext = PtrExtractRewrittenSentBertSumm(**ext_args)
elif ext_type == "rewritten_sent_word_bert_rnn":
ext = PtrExtractRewrittenSentWordBertSumm(**ext_args)
else:
ext = PtrExtractSumm(**ext_args)
ext.load_state_dict(ext_ckpt)
print("loaded extractor")
return ext, vocab
def configure_net(abs_dir, ext_dir, ext_type, emb_type, cuda, num_candidates=1, is_conditional_abs=False):
""" load pretrained sub-modules and build the actor-critic network"""
# load pretrained abstractor model
"""
if abs_dir is not None:
abstractor = Abstractor(abs_dir, MAX_ABS_LEN, cuda)
else:
abstractor = identity
"""
if abs_dir is None or "rewritten" in ext_type:
abstractor = identity
elif is_conditional_abs:
abstractor = ConditionalAbstractor(abs_dir, MAX_ABS_LEN, cuda)
else:
abstractor = Abstractor(abs_dir, MAX_ABS_LEN, cuda)
# load ML trained extractor net and buiild RL agent
extractor, agent_vocab = load_ext_net(ext_dir, ext_type)
if ext_type == "rewritten_rnn":
assert num_candidates == extractor.num_candidates
agent = ActorCriticCand(extractor._candidate_sent_enc,
extractor._candidate_agg,
extractor._art_enc,
extractor._extractor,
ArticleBatcher(agent_vocab, emb_type, cuda),
num_candidates)
elif ext_type == "rewritten_bert_rnn":
raise ValueError
elif ext_type == "rewritten_sent_bert_rnn":
assert num_candidates == extractor.num_candidates
agent = ActorCriticSentBertCand(extractor._sentence_encoder,
extractor._bert_w,
extractor._candidate_agg,
extractor._art_enc,
extractor._extractor,
ArticleBatcher(agent_vocab, emb_type, cuda),
num_candidates)
elif ext_type == "rewritten_sent_word_bert_rnn":
assert num_candidates == extractor.num_candidates
agent = ActorCriticSentWordBertCand(extractor._sentence_encoder,
extractor._bert_w,
extractor._candidate_sent_enc,
extractor._candidate_agg,
extractor._art_enc,
extractor._extractor,
ArticleBatcher(agent_vocab, emb_type, cuda),
num_candidates)
else:
agent = ActorCritic(extractor._sent_enc,
extractor._art_enc,
extractor._extractor,
ArticleBatcher(agent_vocab, emb_type, cuda))
if cuda:
agent = agent.cuda()
net_args = {}
net_args['abstractor'] = (None if abs_dir is None
else json.load(open(join(abs_dir, 'meta.json'))))
net_args['extractor'] = json.load(open(join(ext_dir, 'meta.json')))
return agent, agent_vocab, abstractor, net_args
def configure_training(opt, lr, clip_grad, lr_decay, batch_size,
gamma, reward, stop_coeff, stop_reward):
assert opt in ['adam']
opt_kwargs = {}
opt_kwargs['lr'] = lr
train_params = {}
train_params['optimizer'] = (opt, opt_kwargs)
train_params['clip_grad_norm'] = clip_grad
train_params['batch_size'] = batch_size
train_params['lr_decay'] = lr_decay
train_params['gamma'] = gamma
train_params['reward'] = reward
train_params['stop_coeff'] = stop_coeff
train_params['stop_reward'] = stop_reward
return train_params
def build_batchers(batch_size, train_set_folder, valid_set_folder, emb_type, num_candidates, max_word):
def coll(batch):
art_batch, abs_batch = unzip(batch)
"""
# debug
art_batch = list(art_batch)
print("raw batch:")
print(list(art_batch)[0][0])
print(list(art_batch)[0][1])
print(list(art_batch)[0][2])
print(list(art_batch)[0][3])
"""
#art_sents = list(filter(bool, map(tokenize(max_word, emb_type, num_candidates), art_batch)))
#abs_sents = list(filter(bool, map(tokenize(max_word, emb_type, num_candidates), abs_batch)))
art_sents = []
#abs_sents = []
raw_art_sents = []
raw_abs_sents = []
for art, abs in zip(art_batch, abs_batch):
tokenized_art = tokenize(max_word, emb_type, num_candidates, art)[:args.max_sent]
# tokenized_abs = tokenize(max_word, emb_type, num_candidates, abs)
raw_art = [sent.split(" ")[:max_word] for sent in art]
raw_abs = [sent.split(" ")[:max_word] for sent in abs]
if tokenized_art and raw_abs:
art_sents.append(tokenized_art)
#abs_sents.append(tokenized_abs)
raw_art_sents.append(raw_art)
raw_abs_sents.append(raw_abs)
return art_sents, raw_art_sents, raw_abs_sents
loader = DataLoader(
RLDataset(train_set_folder), batch_size=batch_size,
shuffle=True, num_workers=4, pin_memory=True,
collate_fn=coll
)
val_loader = DataLoader(
RLDataset(valid_set_folder), batch_size=batch_size,
shuffle=False, num_workers=4, pin_memory=True,
collate_fn=coll
)
return cycle(loader), val_loader
def weighted_sum_rouge_12l(prediction_sent_list, abstract_sent_list):
concated_prediction = list(concat(prediction_sent_list))
concated_abstract = list(concat(abstract_sent_list))
rouge_1 = compute_rouge_n(concated_prediction, concated_abstract, n=1, mode='f')
rouge_2 = compute_rouge_n(concated_prediction, concated_abstract, n=2, mode='f')
rouge_l = compute_rouge_l_summ(prediction_sent_list, abstract_sent_list, mode='f')
weight = 1.0/3
return weight * rouge_1 + weight * rouge_2 + weight * rouge_l
def train(args):
if not exists(args.path):
os.makedirs(args.path)
if "bert" in args.ext_type:
args.emb_type = "bert"
else:
args.emb_type = "w2v"
print("emb_type")
print(args.emb_type)
# make net
agent, agent_vocab, abstractor, net_args = configure_net(
args.abs_dir, args.ext_dir, args.ext_type, args.emb_type, args.cuda, args.num_candidates, args.is_conditional_abs)
print("network config")
# configure training setting
assert args.stop > 0
train_params = configure_training(
'adam', args.lr, args.clip, args.decay, args.batch,
args.gamma, args.reward, args.stop, 'rouge-1'
)
print("train config")
train_batcher, val_batcher = build_batchers(args.batch, args.train_set_folder, args.valid_set_folder, args.emb_type, args.num_candidates, args.max_word)
print("build batcher")
if args.reward_type == 0:
reward_fn = compute_rouge_l
stop_reward_fn = compute_rouge_n(n=1)
elif args.reward_type == 1 or args.reward_type == 2:
reward_fn = compute_rouge_l_summ
stop_reward_fn = compute_rouge_n(n=1)
elif args.reward_type == 3:
reward_fn = compute_rouge_l_summ(mode='r')
stop_reward_fn = compute_rouge_n(n=1)
elif args.reward_type == 4:
reward_fn = compute_rouge_l_summ
stop_reward_fn = compute_weighted_rouge_1_2(rouge_1_weight=0.5, mode='f')
else:
raise ValueError
# save abstractor binary
if args.abs_dir is not None:
abs_ckpt = {}
abs_ckpt['state_dict'] = load_best_ckpt(args.abs_dir)
abs_vocab = pkl.load(open(join(args.abs_dir, 'vocab.pkl'), 'rb'))
abs_dir = join(args.path, 'abstractor')
os.makedirs(join(abs_dir, 'ckpt'))
with open(join(abs_dir, 'meta.json'), 'w') as f:
json.dump(net_args['abstractor'], f, indent=4)
torch.save(abs_ckpt, join(abs_dir, 'ckpt/ckpt-0-0'))
with open(join(abs_dir, 'vocab.pkl'), 'wb') as f:
pkl.dump(abs_vocab, f, protocol=4)
# save configuration
meta = {}
meta['net'] = '{}-ext_abs_rl'.format(args.ext_type) # 'ml_{}_extractor'
meta['net_args'] = net_args
meta['train_params'] = train_params
with open(join(args.path, 'meta.json'), 'w') as f:
json.dump(meta, f, indent=4)
with open(join(args.path, 'agent_vocab.pkl'), 'wb') as f:
pkl.dump(agent_vocab, f, protocol=4)
# prepare trainer
grad_fn = get_grad_fn(agent, args.clip)
optimizer = optim.Adam(agent.parameters(), **train_params['optimizer'][1])
if args.no_lr_decay:
scheduler = None
else:
scheduler = ReduceLROnPlateau(optimizer, 'max', verbose=True,
factor=args.decay, min_lr=args.min_lr,
patience=args.lr_p)
pipeline = A2CPipeline(meta['net'], agent, abstractor,
train_batcher, val_batcher,
optimizer, grad_fn,
reward_fn, args.gamma,
stop_reward_fn, args.stop, args.reward_type, args.disable_selected_mask, args.is_conditional_abs, args.debug)
trainer = BasicTrainer(pipeline, args.path,
args.ckpt_freq, args.patience, scheduler,
val_mode='score')
print('start training with the following hyper-parameters:')
print(meta)
sys.stdout.flush()
trainer.train()
if __name__ == '__main__':
print("Go")
parser = argparse.ArgumentParser(
description='program to demo a Seq2Seq model'
)
parser.add_argument('--path', required=True, help='root of the model')
# model options
parser.add_argument('--abs_dir', action='store',
help='pretrained summarizer model root path')
parser.add_argument('--ext_dir', action='store',
help='root of the extractor model')
parser.add_argument('--ckpt', type=int, action='store', default=None,
help='ckeckpoint used decode')
# training options
parser.add_argument('--reward', action='store', default='rouge-l',
help='reward function for RL')
parser.add_argument('--lr', type=float, action='store', default=1e-4,
help='learning rate')
parser.add_argument('--decay', type=float, action='store', default=0.5,
help='learning rate decay ratio')
parser.add_argument('--lr_p', type=int, action='store', default=0,
help='patience for learning rate decay')
parser.add_argument('--gamma', type=float, action='store', default=0.95,
help='discount factor of RL')
parser.add_argument('--stop', type=float, action='store', default=1.0,
help='stop coefficient for rouge-1')
parser.add_argument('--clip', type=float, action='store', default=2.0,
help='gradient clipping')
parser.add_argument('--batch', type=int, action='store', default=32,
help='the training batch size')
parser.add_argument('--max_word', type=int, action='store', default=100,
help='maximun words in a single article sentence')
parser.add_argument('--max_sent', type=int, action='store', default=60,
help='maximun sentences in an article article')
parser.add_argument(
'--ckpt_freq', type=int, action='store', default=1000,
help='number of update steps for checkpoint and validation'
)
parser.add_argument('--patience', type=int, action='store', default=3,
help='patience for early stopping')
parser.add_argument('--no-cuda', action='store_true',
help='disable GPU training')
parser.add_argument('--disable_selected_mask', action='store_true',
help='disable the selection mask in the ptr network')
parser.add_argument('--num_candidates', type=int, action='store', default=1,
help='number of candidates for each sentence.')
parser.add_argument('--ext_type', type=str, action='store', default="rnn", choices=["rnn", "rewritten_rnn", "rewritten_bert_rnn", "rewritten_sent_bert_rnn", "rewritten_sent_word_bert_rnn"],
help='model type of the extractor (rnn, rewritten_rnn).')
parser.add_argument('--train_set_folder', type=str, action='store', default="train",
help='The name of training set folder')
parser.add_argument('--valid_set_folder', type=str, action='store', default="val",
help='The name of validation set folder')
parser.add_argument('--debug', action='store_true',
help='use debug mode')
parser.add_argument('--no_lr_decay', action='store_true',
help='do not use lr decay')
parser.add_argument('--seed', type=int, action='store', default=9527,
help='disable GPU training')
parser.add_argument('--min_lr', type=float, action='store', default=0,
help='minimum learning rate')
parser.add_argument('--is_conditional_abs', action='store_true',
help='use conditional abstractor')
parser.add_argument('--reward_type', type=int, action='store', default=0, choices=[0, 1, 2, 3, 4],
help='0: fast-rl, 1: weighted sum of Rouge 1, 2 and L + reward shaping')
args = parser.parse_args()
args.cuda = torch.cuda.is_available() and not args.no_cuda
print("cuda is available:")
print(args.cuda)
print()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
train(args)