The FitOut project is an open source Python library for extracting FitBit data from Google Takeout.
Use pip to install:
pip install fitout
How to use FitOut:
Export your FitBit data, using Google Takeout.
Note: Currently only export to zip is supported, and the zip files must be extracted to your local drive.
Once the export is complete, download the zip file and extract it. I use C:/Dev/Fitbit/Google/
.
This directory is the takeout_dir
.
import fitout as fo
from datetime import date
def main():
# Specify the location where the Takeout zip files was extracted
takeout_dir = 'C:/Dev/Fitbit/Google/'
# Use the NativeFileLoader to load the data from the extracted files
data_source = fo.NativeFileLoader(takeout_dir)
# Specify the desired date range.
start_date = date(2024, 10, 1)
end_date = date(2024, 10, 31)
# Generate a list of dates for the date range, for informational or plotting purposes.
dates = fo.dates_array(start_date, end_date)
print("Dates:", dates)
# Create the breathing rate importer and fetch the data.
breather_importer = fo.BreathingRate(data_source, 1)
breathing_data = breather_importer.get_data(start_date, end_date)
print("Breathing rate:", breathing_data)
# Create the heart rate variability importer and fetch the data.
hrv_importer = fo.HeartRateVariability(data_source)
hrv_data = hrv_importer.get_data(start_date, end_date)
print("HRV:", hrv_data)
# Create the resting heart rate importer and fetch the data.
rhr_importer = fo.RestingHeartRate(data_source)
rhr_data = rhr_importer.get_data(start_date, end_date)
print("RHR:", rhr_data)
if __name__ == "__main__":
main()
Note: To run this example, you will need to install the dependencies:
pip install matplotlib numpy
from datetime import date
import numpy as np
import matplotlib.pyplot as plt
import fitout as fo
def main():
# Specify the location where the Takeout zip files was extracted
takeout_dir = 'C:/Dev/Fitbit/Google/'
# Use the NativeFileLoader to load the data from the extracted files
data_source = fo.NativeFileLoader(takeout_dir)
# Specify the desired date range.
start_date = date(2024, 10, 1)
end_date = date(2024, 10, 31)
# Generate a list of dates for the date range, for informational or plotting purposes.
dates = fo.dates_array(start_date, end_date)
# Create the breathing rate importer and fetch the data.
breather_importer = fo.BreathingRate(data_source, 1)
breathing_data = breather_importer.get_data(start_date, end_date)
# Create the heart rate variability importer and fetch the data.
hrv_importer = fo.HeartRateVariability(data_source)
hrv_data = hrv_importer.get_data(start_date, end_date)
# Create the resting heart rate importer and fetch the data.
rhr_importer = fo.RestingHeartRate(data_source)
rhr_data = rhr_importer.get_data(start_date, end_date)
# Fill in missing values with the mean of the neighbouring values
breathing_data = fo.fill_missing_with_neighbours(breathing_data)
hrv_data = fo.fill_missing_with_neighbours(hrv_data)
rhr_data = fo.fill_missing_with_neighbours(rhr_data)
# Adjust buggy data (typically values that are too high or too low) to the mean of the neighbouring values
# These values depend on your personal ranges.
breathing_data = fo.fix_invalid_data_points(breathing_data, 10, 20)
hrv_data = fo.fix_invalid_data_points(hrv_data, 20, 50)
rhr_data = fo.fix_invalid_data_points(rhr_data, 46, 54)
# Convert lists to numpy arrays
dates_array = np.asarray(dates)
breathing_data_array = np.array(breathing_data).astype(float)
hrv_data_array = np.array(hrv_data).astype(float)
rhr_data_array = np.array(rhr_data).astype(float)
# Create a combined calmness index as follows: 100-(RHR/2 + breathing rate*2 - HRV)
calmness_index = 100 - (rhr_data_array / 2. + breathing_data_array * 2. - hrv_data_array)
# Plot the calmness index
plt.figure(figsize=(10, 6))
plt.plot(dates_array, calmness_index, marker='o', linestyle='-', color='b')
plt.xlabel('Date')
plt.ylabel('Calmness Index')
plt.title('Calmness Index Over Time')
plt.ylim(60, 95) # Set the y-range
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
# Fit a 4th order polynomial to the calmness index data
dates_axis = np.arange(len(dates_array))
polynomial_coefficients = np.polyfit(dates_axis, calmness_index, 4)
polynomial = np.poly1d(polynomial_coefficients)
fitted_calmness_index = polynomial(dates_axis)
# Plot the fitted polynomial
plt.plot(dates_array, fitted_calmness_index, linestyle='--', color='r', label='4th Order Polynomial Fit')
plt.legend()
plt.show()
plt.show()
if __name__ == "__main__":
main()
For more examples, see the examples directory.
If you'd like to contribute to FitOut, follow the guidelines outlined in the Contributing Guide.
See LICENSE.txt
for more information.
For inquiries and discussion, use FitOut Discussions.
For issues related to this Python implementation, visit the Issues page.