- Core principles
- ValueObjectInterface
- Type helper classes
- Composite Value Objects
- Domain Value Objects
- Nullable Value Objects
This package is built around 3 core principles:
- Value objects MUST be immutable
- Value objects holding the same values MUST be considered equal when compared
- Domain value objects should be pure typesafe types
The first 2 are commonly understood principles applied to value objects. The third is an additional principle that allows code to better express a domain's ubiqutous language, it is provided as an aditional feature see the section on Domain Value Objects below.
For a deeper understanding of value objects read Martin Fowler's article on the subject, or Eric Evans, or Vaugn Vernon's writings on Domain Driven Design.
This package is heavily inspiried by funeralzone/valueobjects and the accompanying blog post
The core of the library is the ValueObjectInterface
, it enforces immutability by making the underlying value readonly and provides an interface for deserialising (toNative()
) and comparing (isSame()
) value objects. It requires a generic type that the vlaue being stored will be:
import { ValueObjectInterface } from "ts-valueobjects";
const anEmailAddress: ValueObjectInterface<string> = {
value: 'email@example.com',
isSame(object: ValueObjectInterface<string>): boolean {
return object.value === this.value;
},
toNative(): string {
return this.value;
}
}
// trying to reset the value will give an error:
anEmailAddress.value = 'new-email@example.com'
-> `Cannot assign to 'value' because it is a read-only property`
More complex value objects can be created and compared depending on the relevant properties that define their equality:
const someCoordinate: ValueObjectInterface<{x:number, y:number}> = {
value: {
x: 3.2,
y: 1.4,
},
isSame(object: ValueObjectInterface<string>): boolean {
return object.x === this.x && object.y === this.y;
},
toNative(): {x:number, y:number} {
return this.value;
}
}
Creating lots of value objects this way can get verbose so you can use some of the included classes for creating common scalar types (StringScalar
, FloatScalar
, IntegerScalar
, BooleanScalar
, NullScalar
).
import { StringScalar } from "ts-valueobjects";
// creating the above email example is much easier:
const anEmailAddress = new StringScalar('email@example.com');
// anEmailAddress is now immutable:
anEmailAddress.value = 'a-new-email@example.com'
-> Will give a compiler error: `Cannot assign to 'value' because it is a read-only property`
// or using the additional static helper:
const anotherEmailAddress = StringScalar.fromNative('another-email@example.com');
console.log(anEmailAddress.isSame(anotherEmailAddress)); // false
import { FloatScalar } from "ts-valueobjects";
const floatValue = FloatScalar.fromNative(23.5);
const floatValue = new FloatScalar(23.5);
floatValue.isNull();
floatValue.isSame(...);
floatValue.toNative();
import { BooleanScalar } from "ts-valueobjects";
const boolValue = BooleanScalar.true();
const boolValue = BooleanScalar.false();
const boolValue = BooleanScalar.fromNatiave(true);
const boolValue = new BooleanScalar(true);
boolValue.isNull();
boolValue.isSame(...);
boolValue.toNative();
boolValue.isTrue();
boolValue.isFalse();
import { IntegerScalar } from "ts-valueobjects";
const integerValue = IntegerScalar.fromNative(BigInt(1));
const integerValue = new IntegerScalar(BigInt(1));
integerValue.isNull();
integerValue.isSame(...);
integerValue.toNative();
import { NullScalar } from "ts-valueobjects";
const nullValue = NullScalar.fromNative();
const nullValue = new NullScalar();
integerValue.isNull();
integerValue.isSame(...);
integerValue.toNative();
Using the helper for cretaing Enums will throw errors when trying to access properties that do not exist:
import { Enumerate, EnumValueObject } from "ts-valueobjects";
class Enumerated extends Enumerate(
class extends EnumValueObject {
static VAL1 = "One";
static VAL2 = "Two";
}
) {}
const value = new Enumerated(Enumerated.VAL3); // will throw an error
const value = new Enumerated(Enumerated.VAL1); // ok
// or
const value = Enumerated.fromNative(Enumerated.VAL1); // ok
The CompositeValueObject
allows you to create value objects that are more complex and contain any number of other value objects (including nested CompositeValueObject
s and Domain Objects).
import { CompositeValueObject } from "ts-valueobjects";
class User extends CompositeValueObject<{
name: StringScalar;
email: StringScalar;
isRegistered: BooleanScalar;
}> {
constructor(name: StringScalar, email: StrigScalar, isRegistered: BooleanScalar) {
super({
name,
email,
isRegistered
});
}
public static fromNative(value: { name: string; email: string, isRegistered: boolean }): User {
return new this(
StringScalar.fromNative(value.name),
StringScalar.fromNative(value.email),
BooleanScalar.fromNative(value.isRegistered)
);
}
public getName = (): StringScalar => {
return this.value.name;
};
...
}
// immutability of the properties is still enforced:
const user = new User(...);
user.value.name = StringValue.fromNative('new name'); // -> this will throw a TypeError
The above helpers can be combined with the DomainObjectFrom()
mixin to allow you to easily create typesafe domain value objects that are more expressive of your domain language. For example:
import { StringScalar, DomainObjectFrom } from "ts-valueobjects";
class EmailAddress extends DomainObjectFrom(
// the class to extend the domain object from
class extends StringScalar {
// a required property that gives this object it's uniqueness
// allowing type checking in other parts of the application
readonly EmailAddress = true;
}
) {}
class PersonName extends DomainObjectFrom(
// the class to extend the domain object from
class extends StringScalar {
// a required property that gives this object it's uniqueness
// allowing type checking in other parts of the application
readonly PersonName = true;
}
) {}
class User {
name: PersonName;
email: EmailAddress;
// the compiler will complain if you try and pass anything other than a PersonName
// or EmailAddress to this constructor
constructor(name: PersonName, email: EmailAddress) {
this.name = name;
this.email = email;
}
}
const user = new User(
new EmailAddress('email@example.com');
new PersonName("Papa John");
);
You can further extend these domain objects to add any domain specific logic you would like:
class EmailAddress extends DomainObjectFrom(
class extends StringScalar {
readonly EmailAddress = true;
getRootDomain = (): string => {
return this.value.split('@')[1];
}
}
) { }
Or provide further validation on the instantiation of the object:
class EmailAddress extends DomainObjectFrom(
class extends StringScalar {
readonly EmailAddress = true;
constructor(value: string) {
super(value);
if (value.length <= 3) {
throw Error("Invalid email address");
}
}
}
) { }
The abstract NullableValueObject
class allows wrapping a null
and a non-null
implementation into the same interface as a ValueObjectInterface
. You just have to define 3 static methods: fromNative()
which does the null / non-null negotiation, and, nonNullImplementation()
and nullImplementation()
which return the relevant implementations for the non-null and the null conditions. These methods should each return a ValueObjectInterface
. By default NullableValueObject
includes a nullImplementation()
that returns a NullScalar
. However this can be overridden and return any ValueObjectInterface
implementation you like.
import { NullableValueObject, NullOr, StringScalar } from "ts-valueobjects";
class NullableUserName extends NullableValueObject<string> {
public static fromNative(value: NullOr<string>): NullableUserName {
return new this(this.getWhichNullImplementation(value));
}
public static nonNullImplementation(value: string): StringScalar {
return new StringScalar("fixed string");
}
}
const nullVersion = NullableUserName.fromNative(null);
console.log(nullVersion.isNull()) // -> true
const nonNullVersion = NullableUserName.fromNative("John Doe");
console.log(nonNullVersion.isNull()) // -> false
console.log(nonNullVersion.isSame(nullVersion)) // -> false
Optionally override the default nullImplementation()
:
class NullImplementationValueObject extends ValueObject<null> {
...
}
class NullableUserName extends NullableValueObject<string> {
public static fromNative(value: NullOr<string>): NullableUserName {
return new this(this.getWhichNullImplementation(value));
}
public static nullImplementation(): StringScalar {
return new NullImplementationValueObject();
}
public static nonNullImplementation(value: string): StringScalar {
return new StringScalar("fixed string");
}
}