-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcoma-cluster.py
323 lines (278 loc) · 13.1 KB
/
coma-cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import numpy as np
import matplotlib.pyplot as pl
from scipy.optimize import curve_fit
import coords as co
import xlrd
import matplotlib.patches as patches
from PIL import Image
# Define a Gaussian function
def Gaussian(x, A, mu, sigma):
return A*np.exp(-0.5*((x-mu)/sigma)**2)
# Physical properties from Ned Wright cosmo calc.
DL = 101.6*1e6 #pc
scale = 0.471 #kpc/"
# Coma Cluster properties from Zwicky+1942
z_coma = 0.023100
v_coma = 6925.0 #km/s
sigma_coma = 1000.0 #km/s
RA_coma=co.convHMS('12:59:48.7') #deg
DEC_coma=co.convDMS('+27:58:50') #deg
################
# Importing Data
################
loc = ('coma.xlsx')
wb=xlrd.open_workbook(loc)
sheet=wb.sheet_by_index(0)
# Sorting data and converting to useful units
ID = []
RA = []
DEC = []
type = []
vel = []
z = []
mag = []
d_coma = []
for i in range(sheet.nrows)[1:]:
ID.append(str(sheet.cell_value(i,0)) + str(sheet.cell_value(i,1)))
RA_tmp = str(sheet.cell_value(i,2))
RA.append(co.convHMS(RA_tmp.split('m')[0][:2] +':'+ RA_tmp.split('m')[0][3:]+':'+RA_tmp.split('m')[1][:4]))
DEC_tmp = str(sheet.cell_value(i,3))
DEC.append(co.convDMS(DEC_tmp.split('m')[0][1:3]+':'+DEC_tmp.split('m')[0][-2:]+':'+DEC_tmp.split('m')[1][0:2]))
type.append(str(sheet.cell_value(i,4)))
vel.append(float(sheet.cell_value(i,5)))
z.append(float(sheet.cell_value(i,6)))
mag.append(str(sheet.cell_value(i,7)))
d_coma.append(float(sheet.cell_value(i,8)))
ID = np.array(ID)
RA = np.array(RA)
DEC = np.array(DEC)
type = np.array(type)
vel = np.array(vel) #km/s
z = np.array(z)
mag = np.array(mag)
d_coma = np.array(d_coma)*60*scale #kpc
# Selcting all r- or R-band data
r_ID = []
r_RA = []
r_DEC = []
r_z = []
r_d_coma = []
r_mag = []
for i in range(len(mag)):
if mag[i][-1]=='r' or mag[i][-1]=='R':
r_ID.append(ID[i])
r_RA.append(RA[i])
r_DEC.append(DEC[i])
r_z.append(z[i])
r_d_coma.append(d_coma[i])
r_mag.append(float(mag[i][:-1]))
r_ID = np.array(r_ID)
r_RA = np.array(r_RA)
r_DEC = np.array(r_DEC)
r_z = np.array(r_z)
r_d_coma = np.array(r_d_coma)
r_mag = np.array(r_mag)
r = r_mag-5*(np.log10(DL)-1)
L_r = 10**(0.4*(4.60-r)) #Lsun -- Sun_R (Coursins-R) = 4.60 #http://mips.as.arizona.edu/~cnaw/sun.html
# Selcting all g- or G-band data
g_ID = []
g_RA = []
g_DEC = []
g_z = []
g_d_coma = []
g_mag = []
for i in range(len(mag)):
if mag[i][-1]=='g' or mag[i][-1]=='G':
g_ID.append(ID[i])
g_RA.append(RA[i])
g_DEC.append(DEC[i])
g_z.append(z[i])
g_d_coma.append(d_coma[i])
g_mag.append(float(mag[i][:-1]))
g_ID = np.array(g_ID)
g_RA = np.array(g_RA)
g_DEC = np.array(g_DEC)
g_z = np.array(g_z)
g_d_coma = np.array(g_d_coma)
g_mag = np.array(g_mag)
g = g_mag-5*(np.log10(DL)-1)
L_g = 10**(0.4*(5.11-g)) #Lsun -- Sun_g (SDSS-g) = 5.11 #http://mips.as.arizona.edu/~cnaw/sun.html
# Selcting all b- or B-band data
b_ID = []
b_RA = []
b_DEC = []
b_z = []
b_d_coma = []
b_mag = []
for i in range(len(mag)):
if mag[i][-1]=='b' or mag[i][-1]=='B':
b_ID.append(ID[i])
b_RA.append(RA[i])
b_DEC.append(DEC[i])
b_z.append(z[i])
b_d_coma.append(d_coma[i])
b_mag.append(float(mag[i][:-1]))
b_ID = np.array(b_ID)
b_RA = np.array(b_RA)
b_DEC = np.array(b_DEC)
b_z = np.array(b_z)
b_d_coma = np.array(b_d_coma)
b_mag = np.array(b_mag)
b = b_mag-5*(np.log10(DL)-1)
L_b = 10**(0.4*(5.31-b)) #Lsun -- Sun_g (Johnson-B) = 5.31 #http://mips.as.arizona.edu/~cnaw/sun.html
# Measure median and luminosity-weighted mean coordinates
median_RA = np.median(RA_coma-RA)
median_DEC = np.median(DEC_coma-DEC)
mean_RA_r = RA_coma-np.average(r_RA,weights=1/L_r)
mean_DEC_r = DEC_coma-np.average(r_DEC,weights=1/L_r)
mean_RA_b = RA_coma-np.average(b_RA,weights=1/L_b)
mean_DEC_b = DEC_coma-np.average(b_DEC,weights=1/L_b)
mean_RA_g = RA_coma-np.average(g_RA,weights=1/L_g)
mean_DEC_g = DEC_coma-np.average(g_DEC,weights=1/L_g)
print 'median: ' + co.deg2HMS(median_RA), co.deg2DMS(median_DEC)
print 'r-band mean: ' + co.deg2HMS(mean_RA_r), co.deg2DMS(mean_DEC_r) + ', ' + str(round(mean_RA_r*3600,1)),str(round(mean_DEC_r*3600,1)) + 'arcsec = ' + str(round(np.sqrt(((mean_RA_r*3600)*np.cos(DEC_coma*np.pi/180))**2 + (mean_DEC_r*3600)**2),1)) + 'arcsec, ' + str(round(mean_RA_r*3600*scale,1)),str(round(mean_DEC_r*3600*scale,1)) + 'kpc = ' + str(round(np.sqrt(((mean_RA_r*3600)*np.cos(DEC_coma*np.pi/180))**2 + (mean_DEC_r*3600)**2)*scale,1)) + 'kpc'
print 'b-band mean: ' + co.deg2HMS(mean_RA_b), co.deg2DMS(mean_DEC_b) + ', ' + str(round(mean_RA_b*3600,1)),str(round(mean_DEC_b*3600,1)) + 'arcsec = ' + str(round(np.sqrt(((mean_RA_b*3600)*np.cos(DEC_coma*np.pi/180))**2 + (mean_DEC_b*3600)**2),1)) + 'arcsec, ' + str(round(mean_RA_b*3600*scale,1)),str(round(mean_DEC_b*3600*scale,1)) + 'kpc = ' + str(round(np.sqrt(((mean_RA_b*3600)*np.cos(DEC_coma*np.pi/180))**2 + (mean_DEC_b*3600)**2)*scale,1)) + 'kpc'
print 'g-band mean: ' + co.deg2HMS(mean_RA_g), co.deg2DMS(mean_DEC_g) + ', ' + str(round(mean_RA_g*3600,1)),str(round(mean_DEC_g*3600,1)) + 'arcsec = ' + str(round(np.sqrt(((mean_RA_g*3600)*np.cos(DEC_coma*np.pi/180))**2 + (mean_DEC_g*3600)**2),1)) + 'arcsec, ' + str(round(mean_RA_g*3600*scale,1)),str(round(mean_DEC_g*3600*scale,1)) + 'kpc = ' + str(round(np.sqrt(((mean_RA_g*3600)*np.cos(DEC_coma*np.pi/180))**2 + (mean_DEC_g*3600)**2)*scale,1)) + 'kpc'
###############
# Plot galaxies
###############
fig, axs = pl.subplots(2, 1,figsize=(5,8))
ax1=axs[0]
ax2=axs[1]
font = {'family' : 'sans-serif',
'weight' : 'normal',
'size' : 14}
pl.rc('font', **font)
ax1.set_xscale('linear')
ax1.set_yscale('linear')
# Whole field
ax1.plot(RA_coma-g_RA,DEC_coma-g_DEC,marker='o',linestyle='none',c='g',alpha=0.2,zorder=9,label='g-band: '+str(len(g_ID)))
ax1.plot(RA_coma-r_RA,DEC_coma-r_DEC,marker='o',linestyle='none',c='r',alpha=0.2,zorder=10,label='r-band: '+str(len(r_ID)))
ax1.plot(RA_coma-b_RA,DEC_coma-b_DEC,marker='o',linestyle='none',c='b',alpha=0.2,zorder=10,label='b-band: '+str(len(b_ID)))
ax1.plot(RA_coma-RA,DEC_coma-DEC,marker='o',linestyle='none',c='k',alpha=0.2,zorder=0,label='no mag: '+str(len(ID)-len(g_ID)+len(r_ID)+len(b_ID)))
# Create a Rectangle patch for core
rect = patches.Rectangle((-0.3,0.3),0.6,-0.6,linewidth=2,edgecolor='k',facecolor='none')
ax1.add_patch(rect)
ax1.grid()
ax1.set_ylim(-2,2)
ax1.set_xlim(-2,2)
ax1.legend(fontsize=12,loc=1,ncol=1,frameon=True,numpoints=1,scatterpoints=1,bbox_to_anchor=(1.47, 1.01))
ax1.set_xlabel(r'$\Delta$ R.A. (deg)')
ax1.set_ylabel(r'$\Delta$ Decl. (deg)')
# Core
ax2.plot(RA_coma-g_RA,DEC_coma-g_DEC,marker='o',linestyle='none',c='g',alpha=0.2,zorder=9)
ax2.plot(RA_coma-r_RA,DEC_coma-r_DEC,marker='o',linestyle='none',c='r',alpha=0.2,zorder=10)
ax2.plot(RA_coma-b_RA,DEC_coma-b_DEC,marker='o',linestyle='none',c='b',alpha=0.2,zorder=10)
ax2.plot(RA_coma-RA,DEC_coma-DEC,marker='o',linestyle='none',c='k',alpha=0.2,zorder=0)
ax2.plot(mean_RA_g,mean_DEC_g,marker='X',ms=20,linestyle='none',c='g',alpha=0.5, label='g-band centre',zorder=10)
ax2.plot(mean_RA_r,mean_DEC_r,marker='X',ms=20,linestyle='none',c='r',alpha=0.5, label='r-band centre',zorder=10)
ax2.plot(mean_RA_b,mean_DEC_b,marker='X',ms=20,linestyle='none',c='b',alpha=0.5, label='b-band centre',zorder=10)
ax2.plot(median_RA,median_DEC,marker='X',ms=20,linestyle='none',c='k',alpha=0.5, label='median centre',zorder=10)
ax2.grid()
ax2.set_ylim(-0.3,0.3)
ax2.set_xlim(-0.3,0.3)
ax2.legend(fontsize=12,loc=1,ncol=1,frameon=True,numpoints=1,scatterpoints=1,bbox_to_anchor=(1.5, 1.01))
ax2.set_xlabel(r'$\Delta$ R.A. (deg)')
ax2.set_ylabel(r'$\Delta$ Decl. (deg)')
pl.savefig('coma_cluster.pdf',bbox_inches='tight')
pl.close()
############
# Histograms
############
fig, axs = pl.subplots(2, 1,figsize=(5,8))
ax1=axs[0]
ax2=axs[1]
#fig, (ax1, ax2) = pl.subplots(nrows=2, sharex=True,figsize=(6,10))
font = {'family' : 'sans-serif',
'weight' : 'normal',
'size' : 14}
pl.rc('font', **font)
ax1.set_xscale('linear')
ax1.set_yscale('linear')
# Compute redshift distrubution and fit Gaussian
zspace=np.linspace(0.02,0.026,150)
z_data, bins = np.histogram(z,bins=20)
popt, pcov = curve_fit(Gaussian, xdata=bins[:-1], ydata=z_data, p0=[40,np.mean(z), np.std(z)])
print popt,np.sqrt(np.diag(pcov))
A,mu,sigma=popt
e_A,e_mu,e_sigma=np.sqrt(np.diag(pcov))
print '<z> = ' + str(round(mu,4)) + '+/-' + str(round(e_sigma,4))
print '<z> - z_coma = ' + str(round((mu-z_coma),6)) + ': <z>/z_coma = ' + str(round(mu/z_coma,5)) + ': e_<z>/delta z = ' + str(round(e_mu/(mu-z_coma),5))
print 'sigma(z) = ' + str(round(sigma,4)) + '+/-' + str(round(e_sigma,4))
ax1.hist(z,20)
ax1.plot(zspace,Gaussian(zspace,A,mu,sigma),c='r',ls='-')
ax1.plot(zspace,Gaussian(zspace,A,mu,sigma+e_sigma),c='r',ls='--')
ax1.plot(zspace,Gaussian(zspace,A,mu,sigma-e_sigma),c='r',ls='--')
ax1.set_xlabel(r'$z$')
ax1.set_ylabel('N')
# Compute velocity distrubution and fit Gaussian
vspace=np.linspace(6000,8000,150)
v_data, bins = np.histogram(vel,bins=20)
popt, pcov = curve_fit(Gaussian, xdata=bins[:-1], ydata=v_data, p0=[40,np.mean(vel), np.std(vel)])
print popt,np.sqrt(np.diag(pcov))
A,mu,sigma=popt
e_A,e_mu,e_sigma=np.sqrt(np.diag(pcov))
print '<v> = ' + str(int(round(mu,0))) + '+/-' + str(int(round(e_sigma,0))) + ' km/s'
print '<v> - v_coma = ' + str(round((mu-v_coma),6)) + ': <v>/v_coma = ' + str(round(mu/v_coma,5)) + ': e_<v>/delta v = ' + str(round(e_mu/(mu-v_coma),5))
print 'sigma(v) = ' + str(int(round(sigma,0))) + '+/-' + str(int(round(e_sigma,0))) + ' km/s'
print '<sigma> - sigma_coma = ' + str(round((sigma-sigma_coma),6)) + ': <sigma>/sigma_coma = ' + str(round(sigma/sigma_coma,5)) + ': e_<sigma>/delta sigma = ' + str(round(e_sigma/(sigma-sigma_coma),5))
ax2.hist(vel,20)
ax2.plot(vspace,Gaussian(vspace,A,mu,sigma),c='r',ls='-')
ax2.plot(vspace,Gaussian(vspace,A,mu,sigma+e_sigma),c='r',ls='--')
ax2.plot(vspace,Gaussian(vspace,A,mu,sigma-e_sigma),c='r',ls='--')
ax2.set_xlabel(r'$v$ (km s$^{-1}$)')
ax2.set_ylabel('N')
pl.savefig('z_v.pdf')
pl.close()
# Compute counts for all data
r = np.sqrt(((RA_coma-RA)*np.cos(RA_coma*np.pi/180))**2 + (DEC_coma-DEC)**2)
N, radius = np.histogram(r,15)
# Compute counts for g-band data - they resemble the field, mostly
g_r = np.sqrt(((RA_coma-g_RA)*np.cos(RA_coma*np.pi/180))**2 + (DEC_coma-g_DEC)**2)
g_N, g_radius = np.histogram(g_r,15)
# Manually sum up the luminosities for each bin
L_g_binned = np.array((sum(L_g[:g_N[0]])
,sum(L_g[g_N[0]:g_N[0]+g_N[1]])
,sum(L_g[g_N[0]+g_N[1]:g_N[0]+g_N[1]+g_N[2]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]:g_N[0]+g_N[1]+g_N[2]+g_N[3]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]+g_N[11]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]+g_N[11]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]+g_N[11]+g_N[12]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]+g_N[11]+g_N[12]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]+g_N[11]+g_N[12]+g_N[13]])
,sum(L_g[g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]+g_N[11]+g_N[12]+g_N[13]:g_N[0]+g_N[1]+g_N[2]+g_N[3]+g_N[4]+g_N[5]+g_N[6]+g_N[7]+g_N[8]+g_N[9]+g_N[10]+g_N[11]+g_N[12]+g_N[13]+g_N[14]])))
######################
# Number density plots
######################
fig, axs = pl.subplots(2, 1,figsize=(5,8))
ax1=axs[0]
ax2=axs[1]
font = {'family' : 'sans-serif',
'weight' : 'normal',
'size' : 14}
pl.rc('font', **font)
# Counts density
ax1.set_xscale('linear')
ax1.set_yscale('linear')
ax1.plot(radius[1:],N,drawstyle='steps',c='k',label='all')
ax1.plot(g_radius[1:],g_N,drawstyle='steps',c='g',label='g-band')
ax1.set_xlim(0,2)
ax1.legend(fontsize=12,loc=1,ncol=1,frameon=True,numpoints=1,scatterpoints=1)#,bbox_to_anchor=(1.35, 1.01))
ax1.set_xlabel(r'r$_{proj.}$ (deg)')
ax1.set_ylabel(r'N (deg$^{-1}$)')
# Luminosity density
ax2.set_xscale('linear')
ax2.set_yscale('log')
ax2.plot(radius[1:],L_g_binned/(np.pi*radius[1:]**2),drawstyle='steps',c='g',label='g-band')
#Poisson error statistics - error \propto 1/\sqrt(N)
ax2.errorbar(radius[1:]-(radius[1]-radius[0])/2,L_g_binned/(np.pi*radius[1:]**2),yerr=L_g_binned/(np.pi*radius[1:]**2)*np.sqrt(1/N.astype(np.float)), linestyle='none', c='g')
ax2.set_xlabel(r'r$_{proj.}$ (deg)')
ax2.set_ylabel(r'L$_g$ (L$_\odot$ deg$^{-1}$)')
ax2.set_xlim(0,2)
pl.savefig('number_luminosity.pdf',bbox_inches='tight')
pl.close()