-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_reducedmir.py
329 lines (278 loc) · 8.65 KB
/
03_reducedmir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import sys
import os
import copy
import time
import argparse
import numpy as np
import pandas as pd
import gurobipy as gp
import joblib as jb
from sklearn.preprocessing import StandardScaler
from mirsep import Mirsep
from utils import features
parser = argparse.ArgumentParser()
parser.add_argument("-problem", type=int, default=0)
parser.add_argument("-index", type=int, default=0)
args = parser.parse_args()
instance_idx = args.index
# base_dir = "/blue/akazachkov/o.guaje/goodinstances/"
base_dir = "./goodinstances/"
all_instances = os.listdir(base_dir)
for file in all_instances:
if ".csv" in file:
all_instances.remove(file)
all_instances.sort()
problem_name = all_instances[args.problem].split(sep=".")[0]
directory = (
# "/blue/akazachkov/o.guaje/" + "gooddata/" + problem_name + "/"
"./scratch/goodfiles/"
+ problem_name
+ "/"
)
opt_threshold = np.load(
"./models/" + problem_name + "/optimal_threshold_" + problem_name + ".npy"
)
opt_threshold = opt_threshold[0]
learned_model = jb.load(
"./models/"
+ problem_name
+ "/GB_classifier_model___"
+ problem_name
+ ".joblib"
)
read_dir = directory + "random/"
alphas_dir = directory + "reduced_cuts/" + str(instance_idx).zfill(4) + "/"
try:
os.makedirs(alphas_dir, exist_ok=True)
except FileExistsError:
pass
sols_dir = directory + "reduced_sols/" + str(instance_idx).zfill(4) + "/"
try:
os.makedirs(sols_dir, exist_ok=True)
except FileExistsError:
pass
multipliers_dir = (
directory + "reduced_lambdas/" + str(instance_idx).zfill(4) + "/"
)
try:
os.makedirs(multipliers_dir, exist_ok=True)
except FileExistsError:
pass
logs_dir = directory + "reduced_logs/" + str(instance_idx).zfill(4) + "/"
try:
os.makedirs(logs_dir, exist_ok=True)
except FileExistsError:
pass
instance = all_instances[args.problem]
instance_id = instance.split(sep=".")[0]
ip = gp.read(read_dir + str(instance_idx).zfill(4) + ".mps")
ip.Params.OutputFlag = 0
ip.Params.LogFile = ""
ip.Params.TimeLimit = 3600 * 0.5
print("Solving IP")
ip.optimize()
print("Solved IP")
print(ip.Runtime)
if ip.Status != 2:
print(problem_name, instance, " broke on IP solve with status ", ip.Status)
sys.exit(0)
ip_val = ip.ObjVal
int_solution = [v.x for v in ip.getVars()]
var_types = ip.getAttr("VType")
lp = ip.relax()
print("Solving relaxation")
lp.optimize()
print("Solved relaxation")
lp_base = lp.ObjVal
solution = [v.x for v in lp.getVars()]
old_solution = copy.deepcopy(solution)
logfile = logs_dir + instance_id + "_"
# results_dir = "/blue/akazachkov/o.guaje/results/"
results_dir = directory + "reduced_results/"
try:
os.mkdir(results_dir)
except FileExistsError:
pass
instance_name = str(instance_idx).zfill(4)
outputfile = results_dir + instance_name + ".txt"
problemfile = results_dir + "problems_" + instance_name + ".txt"
rounds = 0
continuar = True
tic = time.time()
nic = time.process_time()
separator = Mirsep(ip, solution, 5, 600)
toc = time.time()
noc = time.process_time()
print("created separator in ", toc - tic, "wall seconds")
print("created separator in ", noc - nic, "cpu seconds")
this_dataset, feature_names = features(lp, np.array(solution), var_types)
this_dataset = pd.DataFrame(this_dataset, columns=feature_names)
this_dataset["instance_id"] = [instance_idx] * this_dataset.shape[0]
this_dataset["cut_iter"] = [rounds] * this_dataset.shape[0]
scaler = StandardScaler()
this_dataset = scaler.fit_transform(this_dataset)
predictions = learned_model.predict_proba(this_dataset)
predictions = [1 if p[1] > opt_threshold else 0 for p in predictions]
while continuar:
print("Starting separation round ", rounds)
tic = time.time()
nic = time.process_time()
separator.build_model(
logs_dir + str(rounds).zfill(4) + ".log", predictions
)
toc = time.time()
noc = time.process_time()
print("built model in ", toc - tic, "wall seconds")
print("built model in ", noc - nic, "cpu seconds")
separator.solve()
print("Finished separation")
if separator.model.status not in [2, 9, 11]:
print(
problem_name,
instance,
" broke in separation with status ",
separator.model.status,
)
sys.exit()
cuts = separator.get_cuts()
lambdas = separator.get_lambdas()
num_cuts = len(cuts)
valid_cuts = []
variables = lp.getVars()
tic = time.time()
nic = time.process_time()
for i in range(num_cuts):
if (
np.sum(
[
cuts[i][j] * int_solution[j]
for j in range(len(int_solution))
]
)
< cuts[i][-1]
):
line = str(
np.sum(
[
cuts[i][j] * int_solution[j]
for j in range(len(int_solution))
]
)
)
line = line + " " + str(cuts[i][-1])
with open(problemfile, "a") as f:
f.write(
"invalid cut"
+ str(i)
+ " in round "
+ str(rounds)
+ " "
+ line
+ "\n"
)
else:
valid_cuts.append(i)
lp.addConstr(
gp.quicksum(
[
cuts[i][j] * variables[j]
for j in range(len(int_solution))
]
)
>= cuts[i][-1],
name="cgmipcut",
)
toc = time.time()
noc = time.process_time()
print("added cuts in ", toc - tic, "wall seconds")
print("added cuts in ", noc - nic, "cpu seconds")
lp.update()
lp.optimize()
lp_solution = [v.x for v in lp.getVars()]
pd.DataFrame(lp_solution).to_csv(
sols_dir + str(rounds) + ".csv",
index=False,
header=False,
)
# active_cuts = []
# for i in valid_cuts:
# if (
# abs(np.sum(
# [
# cuts[i][j] * int_solution[j]
# for j in range(len(int_solution))
# ]
# ) - cuts[i][-1]) < 1e-6
# ):
# active_cuts.append(i)
# pd.DataFrame([lambdas[i] for i in active_cuts]).to_csv(
pd.DataFrame([lambdas[i] for i in valid_cuts]).to_csv(
multipliers_dir + str(rounds) + ".csv",
index=False,
header=False,
)
pd.DataFrame([cuts[i] for i in valid_cuts]).to_csv(
alphas_dir + str(rounds) + ".csv",
index=False,
header=False,
)
lp_val_all = lp.ObjVal
if abs(ip_val - lp_base) > 1e-6:
gap_closed_all = 100 - 100 * (
(ip_val - lp_val_all) / (ip_val - lp_base)
)
else:
gap_closed_all = -1
line = (
str(rounds)
+ ", "
+ str(lp.Runtime)
+ ", "
+ str(separator.model.status)
+ ", "
+ str(separator.model.Runtime)
+ ", "
+ str(num_cuts)
+ ", "
+ str(gap_closed_all)
+ ", "
+ str(separator.model.MIPGap)
+ "\n"
)
with open(outputfile, "a") as f:
f.write(line)
new_solution = np.array([var.X for var in lp.getVars()])
comparisons = [
np.allclose(old_solution[i], new_solution, atol=1.0e-4)
for i in range(len(new_solution))
]
if not np.allclose(new_solution, solution):
solution = copy.deepcopy(new_solution)
rounds = rounds + 1
tic = time.time()
nic = time.process_time()
separator.update_solution(solution)
this_dataset, feature_names = features(
lp, solution, var_types, orig=ip.NumConstrs
)
this_dataset = pd.DataFrame(this_dataset, columns=feature_names)
this_dataset["instance_id"] = [instance_idx] * this_dataset.shape[0]
this_dataset["cut_iter"] = [rounds] * this_dataset.shape[0]
scalar = StandardScaler()
this_dataset = scaler.fit_transform(this_dataset)
predictions = learned_model.predict_proba(this_dataset)
predictions = [1 if p[1] > opt_threshold else 0 for p in predictions]
toc = time.time()
noc = time.process_time()
print("updated solution in ", toc - tic, "wall seconds")
print("updated solution in ", noc - nic, "cpu seconds")
else:
continuar = False
print("point is not separated")
with open(problemfile, "a") as f:
f.write("Point is not separated\n")
if gap_closed_all >= 100:
continuar = False
print("closed all gap")
with open(problemfile, "a") as f:
f.write("closed all gap\n")