Enchanter is a library for machine learning tasks for comet.ml users.
Getting Started • Docs • Tutorial • Licence
To get started, install PyTorch for your environment. Then install Enchanter in the following way:
To install the stable release.
pip install enchanter
or
To install the latest(unstable) release.
pip install git+https://github.com/khirotaka/enchanter.git
If you want to install with a specific branch, you can use the following.
# e.g.) Install enchanter from develop branch.
pip install git+https://github.com/khirotaka/enchanter.git@develop
Enchanter supports:
- macOS 10.15
- Ubuntu 18.04 or later
Try your first Enchanter Program. To train a neural network written in PyTorch on Enchanter, use the Runner
.
There are 2 ways to define a Runner
:
- To use a
Runner
already implemented underenchanter.tasks
- To define a custom
Runner
that inheritenchanter.engine.BaseRunner
.
Let's see how to use the enchanter.tasks.ClassificationRunner
, which is the easiest way.
import comet_ml
import torch
import enchanter
model = torch.nn.Linear(6, 10)
optimizer = torch.optim.Adam(model.parameters())
runner = enchanter.tasks.ClassificationRunner(
model,
optimizer,
criterion=torch.nn.CrossEntropyLoss(),
experiment=comet_ml.Experiment()
)
runner.add_loader("train", train_loader)
runner.train_config(epochs=10)
runner.run()
Register a torch.utils.data.DataLoader
with the Runner
by using .add_loader()
.
Set up the number of epochs using .train_config()
, and execute Runner
with .run()
.
The wonderful algorithms for unsupervised time series representation learning, adopted at NeurIPS 2019, are now easily available.
Please prepare the following:
- PyTorch Model that can output feature vectors of the same length regardless of the input series.
- time series data consisting of
[N, F, L]
. - (Optional) A teacher label for each sample in
2.
import comet_ml
import torch.nn as nn
import torch.optim as optim
import enchanter.tasks as tasks
import enchanter.addons.layers as L
class Encoder(nn.Module):
def __init__(self, in_features, mid_features, out_features):
super(Encoder, self).__init__()
self.conv = nn.Sequential(
L.CausalConv1d(in_features, mid_features, 3),
nn.LeakyReLU(),
L.CausalConv1d(mid_features, mid_features, 3),
nn.LeakyReLU(),
L.CausalConv1d(mid_features, mid_features, 3),
nn.LeakyReLU(),
nn.AdaptiveMaxPool1d(1)
)
self.fc = nn.Linear(mid_features, out_features)
def forward(self, x):
batch = x.shape[0]
out = self.conv(x).reshape(batch, -1)
return self.fc(out)
experiment = comet_ml.Experiment()
model = Encoder(...)
optimizer = optim.Adam(model.parameters())
runner = tasks.TimeSeriesUnsupervisedRunner(model, optimizer, experiment)
runner.add_loader("train", ...)
runner.run()
A teacher label is required for validation. Also, Use enchanter.callbacks.EarlyStoppingForTSUS
for early stopping.
from comet_ml import Optimizer
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
import enchanter.tasks as tasks
import enchanter.addons as addons
import enchanter.addons.layers as layers
from enchanter.utils import comet
config = comet.TunerConfigGenerator(
algorithm="bayes",
metric="train_avg_loss",
objective="minimize",
seed=0,
trials=1,
max_combo=10
)
config.suggest_categorical("activation", ["addons.mish", "torch.relu", "torch.sigmoid"])
opt = Optimizer(config.generate())
x, y = load_iris(return_X_y=True)
x = x.astype("float32")
y = y.astype("int64")
for experiment in opt.get_experiments():
model = layers.MLP([4, 512, 128, 3], eval(experiment.get_parameter("activation")))
optimizer = optim.Adam(model.parameters())
runner = tasks.ClassificationRunner(
model, optimizer=optimizer, criterion=nn.CrossEntropyLoss(), experiment=experiment
)
runner.fit(x, y, epochs=1, batch_size=32)
runner.quite()
# or
# with runner:
# runner.fit(...)
# or
# runner.run()
Runners with defined in enchanter.tasks
are now support Auto Mixed Precision.
Write the following.
from torch.cuda import amp
from enchanter.tasks import ClassificationRunner
runner = ClassificationRunner(...)
runner.scaler = amp.GradScaler()
If you want to define a custom runner that supports mixed precision, do the following.
from torch.cuda import amp
import torch.nn.functional as F
from enchanter.engine import BaseRunner
class CustomRunner(BaseRunner):
# ...
def train_step(self, batch):
x, y = batch
with amp.autocast(): # REQUIRED
out = self.model(x)
loss = F.nll_loss(out, y)
return {"loss": loss}
runner = CustomRunner(...)
runner.scaler = amp.GradScaler()
That is, you can enable AMP by using torch.cuda.amp.autocast()
in .train_step()
, .val_step()
and .test_step()
.
from comet_ml import Experiment
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.datasets import load_iris
from tqdm.auto import tqdm
import enchanter.tasks as tasks
import enchanter.engine.modules as modules
import enchanter.addons as addons
import enchanter.addons.layers as layers
experiment = Experiment()
model = layers.MLP([4, 512, 128, 3], addons.mish)
optimizer = optim.Adam(model.parameters())
x, y = load_iris(return_X_y=True)
x = x.astype("float32")
y = y.astype("int64")
train_ds = modules.get_dataset(x, y)
val_ds = modules.get_dataset(x, y)
test_ds = modules.get_dataset(x, y)
train_loader = DataLoader(train_ds, batch_size=32)
val_loader = DataLoader(val_ds, batch_size=32)
test_loader = DataLoader(test_ds, batch_size=32)
runner = tasks.ClassificationRunner(
model, optimizer, nn.CrossEntropyLoss(), experiment
)
with runner:
for epoch in tqdm(range(10)):
with runner.experiment.train():
for train_batch in train_loader:
runner.optimizer.zero_grad()
train_out = runner.train_step(train_batch)
runner.backward(train_out["loss"])
runner.update_optimizer()
with runner.experiment.validate(), torch.no_grad():
for val_batch in val_loader:
val_out = runner.val_step(val_batch)["loss"]
runner.experiment.log_metric("val_loss", val_out)
with runner.experiment.test(), torch.no_grad():
for test_batch in test_loader:
test_out = runner.test_step(test_batch)["loss"]
runner.experiment.log_metric("test_loss", test_out)
# The latest checkpoints (model_state & optim_state) are stored
# in comet.ml after the with statement.
import torch
from enchanter.utils import visualize
from enchanter.addons.layers import AutoEncoder
x = torch.randn(1, 32) # [N, in_features]
model = AutoEncoder([32, 16, 8, 2])
visualize.with_netron(model, (x, ))