-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvas.py
96 lines (80 loc) · 3.21 KB
/
vas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from ultralytics import YOLO
import cv2 as cv
from PIL import Image
import numpy as np
import torch
import os
class VAS:
def __init__(self, model_name, video_path):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model_name = model_name
self.video_path = video_path #"Example video.mp4"
self.model = self.load_model()
self.font = cv.FONT_HERSHEY_SIMPLEX
self.location = (0,50)
self.distance = (0,10)
self.fontScale = 1
self.fontColor = (0,0,255)
self.lineType = 3
def load_model(self):
model = YOLO(self.model_name) #'yolov8m.pt'
model.to(self.device)
return model
def predict(self, frame):
return self.model(frame, verbose = False)
def plot_boxes(self, results, annotated_frame):
for r in results:
result = r.boxes.cpu()
key_list = r.names
unique, counts = np.unique(result.cls, return_counts=True)
number = dict(zip(unique,counts))
location = (0,70)
cv.putText(annotated_frame,'There are:',
(0,50),
self.font,
self.fontScale,
self.fontColor,
self.lineType)
for i in unique:
location = (location[0],location[1]+35)
cv.putText(annotated_frame,'{} {}(s)'.format(number[i], key_list[int(i)]),
location,
self.font,
self.fontScale,
self.fontColor,
self.lineType)
return annotated_frame
def __call__(self):
cap = cv.VideoCapture(self.video_path)
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
fps = int(cap.get(5))
output_folder = './static/annotatedVideo'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
output_path = os.path.join(output_folder, 'output.mp4')
# Write frame
size = (frame_width, frame_height)
output = cv.VideoWriter(output_path,
cv.VideoWriter_fourcc(*'H264'),
fps, size)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if not success:
break
# Run YOLOv8 inference on the frame
results = self.predict(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
count_annotated_frame = self.plot_boxes(results,annotated_frame)
# cv.imshow('YOLO V8 Detection', count_annotated_frame)
# if cv.waitKey(1) & 0xFF == ord(' '):
# break
output.write(count_annotated_frame)
output.release()
cap.release()
cv.destroyAllWindows()
# analyzed_video = VAS('yolov8n.pt', 'Examples/ExampleVideo.mp4')
# analyzed_video()