- Important Change from v1.2.0
- Why do we need this RP2040_Slow_PWM library
- Changelog
- Prerequisites
- Installation
- HOWTO Fix
Multiple Definitions
Linker Error - More useful Information
- Usage
- Examples
- Example ISR_16_PWMs_Array_Complex
- Debug Terminal Output Samples
- Debug
- Troubleshooting
- Issues
- TO DO
- DONE
- Contributions and Thanks
- Contributing
- License
- Copyright
Please have a look at HOWTO Fix Multiple Definitions
Linker Error
As more complex calculation and check inside ISR are introduced from v1.2.0, there is possibly some crash depending on use-case.
You can modify to use larger HW_TIMER_INTERVAL_US
, (from current 20uS), according to your board and use-case if crash happens.
// Current 20uS
#define HW_TIMER_INTERVAL_US 20L
Why do we need this RP2040_Slow_PWM library
This library enables you to use Hardware Timers on RP2040-based boards to create and output PWM to pins. Because this library doesn't use the powerful hardware-controlled PWM with limitations, the maximum PWM frequency is currently limited at 1000Hz, which is still suitable for many real-life applications.
This library enables you to use Interrupt from Hardware Timers on RP2040-based boards to create and output PWM to pins. It now supports 16 ISR-based synchronized PWM channels, while consuming only 1 Hardware Timer. PWM interval can be very long (uint32_t millisecs). The most important feature is they're ISR-based PWM channels. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These hardware PWM channels, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software PWM using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy.
As Hardware Timers are rare, and very precious assets of any board, this library now enables you to use up to 16 ISR-based synchronized PWM channels, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs).
Now with these new 16 ISR-based PWM-channels, the maximum interval is practically unlimited (limited only by unsigned long milliseconds) while the accuracy is nearly perfect compared to software PWM channels.
The most important feature is they're ISR-based PWM channels. Therefore, their executions are not blocked by bad-behaving functions / tasks. This important feature is absolutely necessary for mission-critical tasks.
The ISR_16_PWMs_Array_Complex example will demonstrate the nearly perfect accuracy, compared to software PWM, by printing the actual period / duty-cycle in microsecs
of each of PWM-channels.
Being ISR-based PWM, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet or Blynk services. You can also have many (up to 16)
PWM channels to use.
This non-being-blocked important feature is absolutely necessary for mission-critical tasks.
You'll see software-based
SimpleTimer is blocked while system is connecting to WiFi / Internet / Blynk, as well as by blocking task
in loop(), using delay() function as an example. The elapsed time then is very unaccurate
Imagine you have a system with a mission-critical function, measuring water level and control the sump pump or doing something much more important. You normally use a software timer to poll, or even place the function in loop(). But what if another function is blocking the loop() or setup().
So your function might not be executed, and the result would be disastrous.
You'd prefer to have your function called, no matter what happening with other functions (busy loop, bug, etc.).
The correct choice is to use a Hardware Timer with Interrupt to call your function.
These hardware PWM channels, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software PWM channels using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy.
Functions using normal software PWM channels, relying on loop() and calling millis(), won't work if the loop() or setup() is blocked by certain operation. For example, certain function is blocking while it's connecting to WiFi or some services.
The catch is your function is now part of an ISR (Interrupt Service Routine), and must be lean / mean, and follow certain rules. More to read on:
- RP2040-based boards such as ADAFRUIT_FEATHER_RP2040, RASPBERRY_PI_PICO, etc., using arduino-pico core
-
Inside the attached function, delay() won’t work and the value returned by millis() will not increment. Serial data received while in the function may be lost. You should declare as volatile any variables that you modify within the attached function.
-
Typically global variables are used to pass data between an ISR and the main program. To make sure variables shared between an ISR and the main program are updated correctly, declare them as volatile.
-
Earle Philhower's arduino-pico core v1.12.0+ for RP2040-based boards such as RASPBERRY_PI_PICO, ADAFRUIT_FEATHER_RP2040 and GENERIC_RP2040, etc.
-
To use with certain example
SimpleTimer library
to use with some examples.
The best and easiest way is to use Arduino Library Manager
. Search for RP2040_Slow_PWM, then select / install the latest version.
You can also use this link for more detailed instructions.
Another way to install is to:
- Navigate to RP2040_Slow_PWM page.
- Download the latest release
RP2040_Slow_PWM-master.zip
. - Extract the zip file to
RP2040_Slow_PWM-master
directory - Copy whole
RP2040_Slow_PWM-master
folder to Arduino libraries' directory such as~/Arduino/libraries/
.
- Install VS Code
- Install PlatformIO
- Install RP2040_Slow_PWM library by using Library Manager. Search for RP2040_Slow_PWM in Platform.io Author's Libraries
- Use included platformio.ini file from examples to ensure that all dependent libraries will installed automatically. Please visit documentation for the other options and examples at Project Configuration File
The current library implementation, using xyz-Impl.h
instead of standard xyz.cpp
, possibly creates certain Multiple Definitions
Linker error in certain use cases.
You can include this .hpp
file
// Can be included as many times as necessary, without `Multiple Definitions` Linker Error
#include "RP2040_Slow_PWM.hpp" //https://github.com/khoih-prog/RP2040_Slow_PWM
in many files. But be sure to use the following .h
file in just 1 .h
, .cpp
or .ino
file, which must not be included in any other file, to avoid Multiple Definitions
Linker Error
// To be included only in main(), .ino with setup() to avoid `Multiple Definitions` Linker Error
#include "RP2040_Slow_PWM.h" //https://github.com/khoih-prog/RP2040_Slow_PWM
Check the new multiFileProject example for a HOWTO
demo.
Have a look at the discussion in Different behaviour using the src_cpp or src_h lib #80
The RP2040-based system timer peripheral provides a global microsecond timebase
for the system, and generates interrupts based on this timebase. It supports the following features:
• A single 64-bit counter, incrementing once per microsecond • This counter can be read from a pair of latching registers, for race-free reads over a 32-bit bus. • Four alarms: match on the lower 32 bits of counter, IRQ on match: TIMER_IRQ_0-TIMER_IRQ_3
Now with these new 16 ISR-based PWM channels
(while consuming only 1 hardware timer), the maximum interval is practically unlimited (limited only by unsigned long milliseconds). The accuracy is nearly perfect compared to software PWM channels. The most important feature is they're ISR-based PWM channels Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
The ISR_16_PWMs_Array_Complex example will demonstrate the nearly perfect accuracy compared to software PWM channels by printing the actual elapsed microsecs / millisecs of each type of PWM channels.
Being ISR-based PWM channels, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet and Blynk services. You can also have many (up to 16)
PWM channels to use.
This non-being-blocked important feature is absolutely necessary for mission-critical tasks.
You'll see blynkTimer Software is blocked while system is connecting to WiFi / Internet / Blynk, as well as by blocking task in loop(), using delay() function as an example. The elapsed time then is very unaccurate
Before using any Timer, you have to make sure the Timer has not been used by any other purpose.
TIMER_IRQ_0, TIMER_IRQ_1, TIMER_IRQ_2 and TIMER_IRQ_3
are supported for RP2040-based boards.
// Init RPI_PICO_Timer
RP2040_Timer ITimer(0);
// Init RP2040_Slow_PWM, each can service 16 different ISR-based PWM channels
RP2040_Slow_PWM ISR_PWM;
void irqCallbackStartFunc()
{
}
void irqCallbackStopFunc()
{
}
void setup()
{
....
// You can use this with PWM_Freq in Hz
ISR_PWM.setPWM(PWM_Pin, PWM_Freq, PWM_DutyCycle, irqCallbackStartFunc, irqCallbackStopFunc);
....
}
- ISR_16_PWMs_Array
- ISR_16_PWMs_Array_Complex
- ISR_16_PWMs_Array_Simple
- ISR_Changing_PWM
- ISR_Modify_PWM
- multiFileProject New
Example ISR_16_PWMs_Array_Complex
The following is the sample terminal output when running example ISR_16_PWMs_Array_Complex to demonstrate how to use multiple PWM channels with complex callback functions, the accuracy of ISR Hardware PWM-channels, especially when system is very busy. The ISR PWM-channels is running exactly according to corresponding programmed periods and duty-cycles
Starting ISR_16_PWMs_Array_Complex on RASPBERRY_PI_PICO
RP2040_Slow_PWM v1.2.1
[PWM] _timerNo = 0 , Clock (Hz) = 1000000.00 , _fre (Hz) = 50000.00
[PWM] _count = 0 - 20
[PWM] add_repeating_timer_us = 20
Starting ITimer OK, micros() = 2785656
Channel : 0 Period : 1000000 OnTime : 50000 Start_Time : 2786499
Channel : 1 Period : 500000 OnTime : 50000 Start_Time : 2787719
Channel : 2 Period : 333333 OnTime : 66666 Start_Time : 2788751
Channel : 3 Period : 250000 OnTime : 75000 Start_Time : 2789774
Channel : 4 Period : 200000 OnTime : 80000 Start_Time : 2790825
Channel : 5 Period : 166666 OnTime : 74999 Start_Time : 2791865
Channel : 6 Period : 142857 OnTime : 71428 Start_Time : 2792858
Channel : 7 Period : 125000 OnTime : 68750 Start_Time : 2793852
Channel : 8 Period : 111111 OnTime : 66666 Start_Time : 2794834
Channel : 9 Period : 100000 OnTime : 65000 Start_Time : 2795930
Channel : 10 Period : 66666 OnTime : 46666 Start_Time : 2796986
Channel : 11 Period : 50000 OnTime : 37500 Start_Time : 2798025
Channel : 12 Period : 40000 OnTime : 32000 Start_Time : 2799056
Channel : 13 Period : 33333 OnTime : 28333 Start_Time : 2800049
Channel : 14 Period : 25000 OnTime : 22500 Start_Time : 2801121
Channel : 15 Period : 20000 OnTime : 19000 Start_Time : 2802222
SimpleTimer (ms): 2000, us : 12803462, Dus : 10017146
PWM Channel : 0, programmed Period (us): 1000000.00, actual : 1000006, programmed DutyCycle : 5.00, actual : 5.00
PWM Channel : 1, programmed Period (us): 500000.00, actual : 500019, programmed DutyCycle : 10.00, actual : 10.00
PWM Channel : 2, programmed Period (us): 333333.34, actual : 333336, programmed DutyCycle : 20.00, actual : 20.00
PWM Channel : 3, programmed Period (us): 250000.00, actual : 250015, programmed DutyCycle : 30.00, actual : 30.00
PWM Channel : 4, programmed Period (us): 200000.00, actual : 200010, programmed DutyCycle : 40.00, actual : 39.99
PWM Channel : 5, programmed Period (us): 166666.67, actual : 166669, programmed DutyCycle : 45.00, actual : 45.00
PWM Channel : 6, programmed Period (us): 142857.14, actual : 142880, programmed DutyCycle : 50.00, actual : 49.99
PWM Channel : 7, programmed Period (us): 125000.00, actual : 125018, programmed DutyCycle : 55.00, actual : 54.99
PWM Channel : 8, programmed Period (us): 111111.11, actual : 111117, programmed DutyCycle : 60.00, actual : 60.00
PWM Channel : 9, programmed Period (us): 100000.00, actual : 100016, programmed DutyCycle : 65.00, actual : 64.98
PWM Channel : 10, programmed Period (us): 66666.66, actual : 66680, programmed DutyCycle : 70.00, actual : 69.96
PWM Channel : 11, programmed Period (us): 50000.00, actual : 50015, programmed DutyCycle : 75.00, actual : 74.94
PWM Channel : 12, programmed Period (us): 40000.00, actual : 40016, programmed DutyCycle : 80.00, actual : 79.96
PWM Channel : 13, programmed Period (us): 33333.33, actual : 33348, programmed DutyCycle : 85.00, actual : 84.90
PWM Channel : 14, programmed Period (us): 25000.00, actual : 25018, programmed DutyCycle : 90.00, actual : 89.88
PWM Channel : 15, programmed Period (us): 20000.00, actual : 20022, programmed DutyCycle : 95.00, actual : 94.80
SimpleTimer (ms): 2000, us : 22835351, Dus : 10031889
PWM Channel : 0, programmed Period (us): 1000000.00, actual : 1000010, programmed DutyCycle : 5.00, actual : 5.00
PWM Channel : 1, programmed Period (us): 500000.00, actual : 500017, programmed DutyCycle : 10.00, actual : 10.00
PWM Channel : 2, programmed Period (us): 333333.34, actual : 333346, programmed DutyCycle : 20.00, actual : 20.00
PWM Channel : 3, programmed Period (us): 250000.00, actual : 250021, programmed DutyCycle : 30.00, actual : 30.00
PWM Channel : 4, programmed Period (us): 200000.00, actual : 200016, programmed DutyCycle : 40.00, actual : 39.99
PWM Channel : 5, programmed Period (us): 166666.67, actual : 166673, programmed DutyCycle : 45.00, actual : 44.98
PWM Channel : 6, programmed Period (us): 142857.14, actual : 142882, programmed DutyCycle : 50.00, actual : 49.99
PWM Channel : 7, programmed Period (us): 125000.00, actual : 125019, programmed DutyCycle : 55.00, actual : 54.99
PWM Channel : 8, programmed Period (us): 111111.11, actual : 111130, programmed DutyCycle : 60.00, actual : 59.97
PWM Channel : 9, programmed Period (us): 100000.00, actual : 100022, programmed DutyCycle : 65.00, actual : 64.97
PWM Channel : 10, programmed Period (us): 66666.66, actual : 66674, programmed DutyCycle : 70.00, actual : 69.97
PWM Channel : 11, programmed Period (us): 50000.00, actual : 50025, programmed DutyCycle : 75.00, actual : 74.95
PWM Channel : 12, programmed Period (us): 40000.00, actual : 40021, programmed DutyCycle : 80.00, actual : 79.93
PWM Channel : 13, programmed Period (us): 33333.33, actual : 33353, programmed DutyCycle : 85.00, actual : 84.88
PWM Channel : 14, programmed Period (us): 25000.00, actual : 25030, programmed DutyCycle : 90.00, actual : 89.83
PWM Channel : 15, programmed Period (us): 20000.00, actual : 20002, programmed DutyCycle : 95.00, actual : 94.98
The following is the sample terminal output when running example ISR_16_PWMs_Array on RP2040-based RASPBERRY_PI_PICO to demonstrate how to use multiple PWM channels with simple callback functions.
Starting ISR_16_PWMs_Array on RASPBERRY_PI_PICO
RP2040_Slow_PWM v1.2.1
[PWM] _timerNo = 0 , Clock (Hz) = 1000000.00 , _fre (Hz) = 50000.00
[PWM] _count = 0 - 20
[PWM] add_repeating_timer_us = 20
Starting ITimer OK, micros() = 3375080
Channel : 0 Period : 1000000 OnTime : 50000 Start_Time : 3375848
Channel : 1 Period : 500000 OnTime : 50000 Start_Time : 3376896
Channel : 2 Period : 333333 OnTime : 66666 Start_Time : 3377917
Channel : 3 Period : 250000 OnTime : 75000 Start_Time : 3378836
Channel : 4 Period : 200000 OnTime : 80000 Start_Time : 3379840
Channel : 5 Period : 166666 OnTime : 74999 Start_Time : 3380910
Channel : 6 Period : 142857 OnTime : 71428 Start_Time : 3381965
Channel : 7 Period : 125000 OnTime : 68750 Start_Time : 3383038
Channel : 8 Period : 111111 OnTime : 66666 Start_Time : 3384070
Channel : 9 Period : 100000 OnTime : 65000 Start_Time : 3385188
Channel : 10 Period : 66666 OnTime : 46666 Start_Time : 3386372
Channel : 11 Period : 50000 OnTime : 37500 Start_Time : 3387391
Channel : 12 Period : 40000 OnTime : 32000 Start_Time : 3388472
Channel : 13 Period : 33333 OnTime : 28333 Start_Time : 3389601
Channel : 14 Period : 25000 OnTime : 22500 Start_Time : 3390754
Channel : 15 Period : 20000 OnTime : 19000 Start_Time : 3391754
The following is the sample terminal output when running example ISR_16_PWMs_Array_Simple on RP2040-based RASPBERRY_PI_PICO to demonstrate how to use multiple PWM channels.
Starting ISR_16_PWMs_Array_Simple on RASPBERRY_PI_PICO
RP2040_Slow_PWM v1.2.1
[PWM] _timerNo = 0 , Clock (Hz) = 1000000.00 , _fre (Hz) = 50000.00
[PWM] _count = 0 - 20
[PWM] add_repeating_timer_us = 20
Starting ITimer OK, micros() = 3256238
Channel : 0 Period : 1000000 OnTime : 50000 Start_Time : 3257002
Channel : 1 Period : 500000 OnTime : 50000 Start_Time : 3258118
Channel : 2 Period : 333333 OnTime : 66666 Start_Time : 3259117
Channel : 3 Period : 250000 OnTime : 75000 Start_Time : 3260125
Channel : 4 Period : 200000 OnTime : 80000 Start_Time : 3261113
Channel : 5 Period : 166666 OnTime : 74999 Start_Time : 3261964
Channel : 6 Period : 142857 OnTime : 71428 Start_Time : 3262970
Channel : 7 Period : 125000 OnTime : 68750 Start_Time : 3263893
Channel : 8 Period : 111111 OnTime : 66666 Start_Time : 3264919
Channel : 9 Period : 100000 OnTime : 65000 Start_Time : 3265906
Channel : 10 Period : 66666 OnTime : 46666 Start_Time : 3266883
Channel : 11 Period : 50000 OnTime : 37500 Start_Time : 3267903
Channel : 12 Period : 40000 OnTime : 32000 Start_Time : 3268882
Channel : 13 Period : 33333 OnTime : 28333 Start_Time : 3269972
Channel : 14 Period : 25000 OnTime : 22500 Start_Time : 3271036
Channel : 15 Period : 20000 OnTime : 19000 Start_Time : 3272042
The following is the sample terminal output when running example ISR_Modify_PWM on RASPBERRY_PI_PICO to demonstrate how to modify PWM settings on-the-fly without deleting the PWM channel
Starting ISR_Modify_PWM on RASPBERRY_PI_PICO
RP2040_Slow_PWM v1.2.1
[PWM] _timerNo = 0 , Clock (Hz) = 1000000.00 , _fre (Hz) = 50000.00
[PWM] _count = 0 - 20
[PWM] add_repeating_timer_us = 20
Starting ITimer OK, micros() = 2791911
Using PWM Freq = 200.00, PWM DutyCycle = 1.00
Channel : 0 Period : 5000 OnTime : 50 Start_Time : 2793180
Channel : 0 Period : 10000 OnTime : 555 Start_Time : 12794374
Channel : 0 Period : 5000 OnTime : 50 Start_Time : 22794212
Channel : 0 Period : 10000 OnTime : 555 Start_Time : 32795264
Channel : 0 Period : 5000 OnTime : 50 Start_Time : 42794822
Channel : 0 Period : 10000 OnTime : 555 Start_Time : 52796069
Channel : 0 Period : 5000 OnTime : 50 Start_Time : 62795977
Channel : 0 Period : 10000 OnTime : 555 Start_Time : 72796753
Channel : 0 Period : 5000 OnTime : 50 Start_Time : 82796835
Channel : 0 Period : 10000 OnTime : 555 Start_Time : 92802985
The following is the sample terminal output when running example ISR_Changing_PWM on RASPBERRY_PI_PICO to demonstrate how to modify PWM settings on-the-fly by deleting the PWM channel and reinit the PWM channel
Starting ISR_Changing_PWM on RASPBERRY_PI_PICO
RP2040_Slow_PWM v1.2.1
[PWM] _timerNo = 0 , Clock (Hz) = 1000000.00 , _fre (Hz) = 50000.00
[PWM] _count = 0 - 20
[PWM] add_repeating_timer_us = 20
Starting ITimer OK, micros() = 3321829
Using PWM Freq = 1.00, PWM DutyCycle = 50.00
Channel : 0 Period : 1000000 OnTime : 500000 Start_Time : 3323139
Using PWM Freq = 2.00, PWM DutyCycle = 90.00
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 13325144
Using PWM Freq = 1.00, PWM DutyCycle = 50.00
Channel : 0 Period : 1000000 OnTime : 500000 Start_Time : 23327067
Using PWM Freq = 2.00, PWM DutyCycle = 90.00
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 33328995
Using PWM Freq = 1.00, PWM DutyCycle = 50.00
Channel : 0 Period : 1000000 OnTime : 500000 Start_Time : 43330843
Debug is enabled by default on Serial.
You can also change the debugging level _PWM_LOGLEVEL_
from 0 to 4
// Don't define _PWM_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define _PWM_LOGLEVEL_ 0
If you get compilation errors, more often than not, you may need to install a newer version of the core for Arduino boards.
Sometimes, the library will only work if you update the board core to the latest version because I am using newly added functions.
Submit issues to: RP2040_Slow_PWM issues
- Search for bug and improvement.
- Similar features for remaining Arduino boards
- Basic hardware multi-channel PWM for RP2040-based RASPBERRY_PI_PICO, ADAFRUIT_FEATHER_RP2040, etc. using Earle Philhower's arduino-pico core
- Add Table of Contents
- Add functions to modify PWM settings on-the-fly
- Improve accuracy by using
float
, instead ofuint32_t
fordutycycle
- Optimize library code by using
reference-passing
instead ofvalue-passing
- DutyCycle to be optionally updated at the end current PWM period instead of immediately.
- Display informational warning only when
_PWM_LOGLEVEL_
> 3
Many thanks for everyone for bug reporting, new feature suggesting, testing and contributing to the development of this library.
If you want to contribute to this project:
- Report bugs and errors
- Ask for enhancements
- Create issues and pull requests
- Tell other people about this library
- The library is licensed under MIT
Copyright 2021- Khoi Hoang