-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_data_collect.py
49 lines (39 loc) · 1.36 KB
/
face_data_collect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
skip = 0
face_data = []
dataset_path = 'data/'
face_section = np.zeros((100, 100), dtype='uint8')
file_name = input("Enter your name: ")
while True:
ret, frame = cap.read()
if ret == False:
continue
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(frame, 1.3, 5)
faces = sorted(faces, key=lambda f: f[2]*f[3])
# cv2.imshow("Gray Frame",gray_frame)
for face in faces[-1:]:
x, y, w, h = face
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 255), 2)
offset = 10
face_section = frame[y-offset:y+h+offset, x-offset:x+w+offset]
face_section = cv2.resize(face_section, (100, 100))
skip += 1
if skip % 10 == 0:
face_data.append(face_section)
print(len(face_data))
cv2.imshow("Video Frame", frame)
cv2.imshow("face section", face_section)
key_pressed = cv2.waitKey(1) & 0xFF
if key_pressed == ord('s'):
break
face_data = np.asarray(face_data)
face_data = face_data.reshape((face_data.shape[0], -1))
print(face_data.shape)
np.save(dataset_path+file_name+'.npy', face_data)
print("Data successfully saved at "+dataset_path+file_name+'.npy')
cap.release()
cv2.destroyAllWindows()