Skip to content

Commit

Permalink
Edited ODR
Browse files Browse the repository at this point in the history
  • Loading branch information
leon committed Dec 19, 2023
1 parent 0db0f61 commit b6ff9b4
Show file tree
Hide file tree
Showing 14 changed files with 1,159 additions and 392 deletions.
Binary file modified bin/LifNet
Binary file not shown.
264 changes: 148 additions & 116 deletions conf/config_ODR.yml
Original file line number Diff line number Diff line change
@@ -1,122 +1,154 @@
A_CORR:
- 0.0025
- 0.0025
A_DIST:
- 0.0
- 0.0
A_STIM:
- 0.2
- 0.0
BUMP_SWITCH:
- 0
- 0
CHECK_BISTABILITY: 0
CORR_FF:
- 0.25
- 0.25
DATA_PATH: /home/leon/models/lif_cpp/data/simul/odr_Ie_2.80_phi_180_ini_32
DT: 0.1
DURATION: 6000.0
FRAC:
- 0.8
- 0.2
GAIN: 1.0
IF_FF_CORR: 0
IF_FF_NOISE: 1
IF_LOAD_MAT: 1
IF_NMDA: 1
##########################################
# Simulation parameters
##########################################
IF_SAVE_DATA: 1
# to load connectivity matrix from MAT_PATH
IF_LOAD_MAT: 1
# to save connectivity matrix from MAT_PATH
IF_SAVE_MAT: 0
IF_STP: 1
Iext:
- 0.0028
- 0.00175
Jab:
- 7.5
- -1.35
- 1.25
- -2.0
K: 4000.0
KAPPA:
- 0.5
- 0.45
- 0.5
- 0.5
KAPPA_DIST:
- 0.0
- 0.0
KAPPA_STIM:
- 0.5
- 0.0
LR_LOAD: 0
LR_MEAN:
- 0.0
- 0.0
- 0.0
LR_RANK: 3
LR_RHO:
- 0.0
- 1.0
- 0.0
LR_SEED: 1
LR_STD:
- 1.0
- 1.0
- 1.0
MAT_PATH: /home/leon/models/lif_cpp/data/matrix
N: 40000
N_POP: 2
PHI_DIST:
- 90.0
- 0.0
PHI_STIM:
- 180.0
- 0.0
PROBA:
- cos
- cos
- cos
- cos
R_NMDA:
- 0.5
- 0.5
STD_DIST:
- 0.0
- 0.0
STD_FF:
- 2.5e-05
- 2.5e-05
STD_STIM:
- 0.0
- 0.0
TAU_FAC:
- 550
- 850
TAU_MEM:
- 20.0
- 10.0
TAU_NMDA:
- 80.0
- 40.0
TAU_REC:
- 250
- 200
TAU_SYN:
- 4.0
- 2.0
T_DIST:
- 13500.0
- 14500.0

# saving the last T_SAVE ms
T_SAVE: 500.0

# path for the output files of the simulation
DATA_PATH: /home/leon/models/lif_cpp/data/simul
# path to load/save the connectivity matrix
MAT_PATH: /home/leon/models/lif_cpp/data/matrix

# output different prompts for debugging purpose
verbose: 1

# Time step in ms
DT: 0.1
# total simulation time in ms
DURATION: 20000.0
# time to start showing simulation result ms
T_STEADY: 5000.0
T_STIM:
- 1000.0
- 1500.0
# Saving to files every T_WINDOW in ms
T_WINDOW: 250.0
USE:
- 0.03
- 0.03
V_LEAK: 0.0
V_REST: -70.0

##########################################
# Network parameters
##########################################
# Total number of neurons
N: 40000
# Number of populations
N_POP: 2
# Average number of presynaptic inputs
K: 4000.0
# K: 4000.0
# Fraction of neurons in each population
FRAC: [0.8, 0.2]

##########################################
# Parameters for the stimulus presentation
##########################################
# stimulus has a cosine shape
# time for stimulus onset/offset in ms
T_STIM: [1000.0, 1500.0]
# amplitude of the stimulus
A_STIM: [0.2, 0.0]
# std of the stimulus
STD_STIM: [0.0, 0.0]
# Phase of the 1st stimulus
PHI_STIM: [180.0, 0.0]
# Tuning of the stimulus
KAPPA_STIM: [0.5, 0.0]

T_DIST: [135000.0, 145000.0]
# amplitude of the stimulus
A_DIST: [0.0, 0.0]
# std of the stimulus
STD_DIST: [0.0, 0.0]
# Phase of the 1st stimulus
PHI_DIST: [90.0, 0.0]
# Tuning of the stimulus
KAPPA_DIST: [0.0, 0.0]

CHECK_BISTABILITY: 0
BUMP_SWITCH: [0, 0]
##############
# Network Dynamics
##############
# Threshold in mV
V_THRESH: -50.0
verbose: 1
# Resting potential in mV
V_REST: -70.0
# Leak in mV
V_LEAK: 0.0

# Membrane time constants in ms
TAU_MEM: [20.0, 10.0]
# Synaptic time constants in ms
TAU_SYN: [4.0, 2.0]

# Adding NMDA currents
IF_NMDA: 1
# NMDA time constants in s
TAU_NMDA: [80.0, 40.0]
# NMDA strength ratio
R_NMDA: [0.5, 0.5]

# Network's gain
GAIN: 1.0

# Feedforward inputs strengths
Iext: [.002, 0.00175]
# Synaptic strengths
# Jab: [15.0, -1.35, 2.5, -2.0]
Jab: [10.0, -1.25, 1.25, -1.7]
# Jab: [14.0, -1.35, 2.1, -1.95]

##############
# CONNECTIVITY
##############
# PROBA can be 'cos', 'spec', 'gauss', 'None'
# By default the matrix is a random sparse matrix Cij
# 'cos' gives a sparse matrix with strong cosine structure,
# Pij = (1 + KAPPA cos(theta_ij) / sqrt(Kb)), Cij = 1 with proba Pij
# 'spec' gives a sparse matrix with weak cosine structure,
# Pij = (1 + KAPPA cos(theta_ij) / sqrt(Kb)) , Cij = 1 with proba Pij
PROBA: ['cos', 'cos', 'cos', 'cos']
KAPPA: [1.0, 0.85, 1.0, 1.0]
# KAPPA: [0.5, 0.425, 0.5, 0.5]

# PROBA: ['lr', 'rand', 'rand', 'rand']
# KAPPA: [3.0, 0.0, 0.0, 0.0]

##############
# STP
##############
# adds STP (as in Mato & Hansel, J Neurosci, 2012)
IF_STP: 1
USE: [0.03, 0.03]
TAU_FAC: [550, 850]
TAU_REC: [250, 200]

##############
# Feed Forward
##############
# adds gaussian noise to feedforward
IF_FF_NOISE: 0
# variance of the noise
STD_FF: [0.00002, 0.00002]

# adds cosine correlation to the feedforward
IF_FF_CORR: 0
# amplitude of the correlations
A_CORR: [0.001, 0.001]
# tuning of the correlations
CORR_FF: [1.0, 1.0]

######################
# Low rank
####################
LR_SEED: 1
LR_LOAD: 0

LR_RANK: 3
LR_MEAN: [0.0, 0.0, 0.0]
LR_STD: [1.0, 1.0, 1.0]
# ksi_1 ksi_2, ksi_1 h_s, ksi_2 h_s
# LR_RHO: [0.05, 0.8, 0.2]
# LR_RHO: [0.0, 0.8, -0.2]
LR_RHO: [0.0, 1.0, 0.0]
65 changes: 31 additions & 34 deletions conf/config_ODR.yml.bak
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,11 @@
# Simulation parameters
##########################################
IF_SAVE_DATA: 1
# to load connectivity matrix from MAT_PATH
IF_LOAD_MAT: 1
# to save connectivity matrix from MAT_PATH
IF_SAVE_MAT: 0

# saving the last T_SAVE ms
T_SAVE: 500.0

Expand All @@ -16,7 +21,7 @@ verbose: 1
# Time step in ms
DT: 0.1
# total simulation time in ms
DURATION: 6000.0
DURATION: 20000.0
# time to start showing simulation result ms
T_STEADY: 5000.0
# Saving to files every T_WINDOW in ms
Expand All @@ -31,6 +36,7 @@ N: 40000
N_POP: 2
# Average number of presynaptic inputs
K: 4000.0
# K: 4000.0
# Fraction of neurons in each population
FRAC: [0.8, 0.2]

Expand All @@ -49,7 +55,7 @@ PHI_STIM: [180.0, 0.0]
# Tuning of the stimulus
KAPPA_STIM: [0.5, 0.0]

T_DIST: [13500.0, 14500.0]
T_DIST: [135000.0, 145000.0]
# amplitude of the stimulus
A_DIST: [0.0, 0.0]
# std of the stimulus
Expand Down Expand Up @@ -87,51 +93,28 @@ R_NMDA: [0.5, 0.5]
GAIN: 1.0

# Feedforward inputs strengths
Iext: [.0025, 0.00175]
Iext: [.002, 0.00175]
# Synaptic strengths
# Jab: [15.0, -1.35, 2.5, -2.0]
Jab: [7.5, -1.35, 1.25, -2.0]
Jab: [10.0, -1.25, 1.25, -1.7]
# Jab: [14.0, -1.35, 2.1, -1.95]

# # External inputs strengths
# Iext: [.004, .001]
# # Synaptic strengths
# Jab: [1.0, -1.5, 1.0, -1.0]

##############
# CONNECTIVITY
##############
# to load connectivity matrix from MAT_PATH
IF_LOAD_MAT: 1
# to save connectivity matrix from MAT_PATH
IF_SAVE_MAT: 0

# connectivity type
# PROBA can be 'cos', 'spec', 'gauss', 'None'
# By default the matrix is a random sparse matrix Cij
# 'cos' gives a sparse matrix with strong cosine structure,
# Pij = (1 + KAPPA cos(theta_ij) / sqrt(Kb)), Cij = 1 with proba Pij
# 'spec' gives a sparse matrix with weak cosine structure,
# Pij = (1 + KAPPA cos(theta_ij) / sqrt(Kb)) , Cij = 1 with proba Pij

PROBA: ['cos', 'cos', 'cos', 'cos']
KAPPA: [0.5, 0.45, 0.5, 0.5]
KAPPA: [1.0, 0.85, 1.0, 1.0]
# KAPPA: [0.5, 0.425, 0.5, 0.5]

# PROBA: ['lr', 'rand', 'rand', 'rand']
# KAPPA: [3.0, 0.0, 0.0, 0.0]

# Low rank
LR_SEED: 1
LR_LOAD: 0

LR_RANK: 3
LR_MEAN: [0.0, 0.0, 0.0]
LR_STD: [1.0, 1.0, 1.0]
# ksi_1 ksi_2, ksi_1 h_s, ksi_2 h_s
# LR_RHO: [0.05, 0.8, 0.2]
# LR_RHO: [0.0, 0.8, -0.2]
LR_RHO: [0.0, 1.0, 0.0]

##############
# STP
##############
Expand All @@ -145,13 +128,27 @@ TAU_REC: [250, 200]
# Feed Forward
##############
# adds gaussian noise to feedforward
IF_FF_NOISE: 1
IF_FF_NOISE: 0
# variance of the noise
STD_FF: [0.000025, 0.000025]
STD_FF: [0.00002, 0.00002]

# adds cosine correlation to the feedforward
IF_FF_CORR: 0
# amplitude of the correlations
A_CORR: [0.0025, 0.0025]
#
CORR_FF: [0.25, 0.25]
A_CORR: [0.001, 0.001]
# tuning of the correlations
CORR_FF: [1.0, 1.0]

######################
# Low rank
####################
LR_SEED: 1
LR_LOAD: 0

LR_RANK: 3
LR_MEAN: [0.0, 0.0, 0.0]
LR_STD: [1.0, 1.0, 1.0]
# ksi_1 ksi_2, ksi_1 h_s, ksi_2 h_s
# LR_RHO: [0.05, 0.8, 0.2]
# LR_RHO: [0.0, 0.8, -0.2]
LR_RHO: [0.0, 1.0, 0.0]
Loading

0 comments on commit b6ff9b4

Please sign in to comment.