-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
leon
committed
Jan 5, 2024
1 parent
0fe20bc
commit b705ac9
Showing
22 changed files
with
1,901 additions
and
1,213 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,22 +1,176 @@ | ||
########################################## | ||
# Simulation parameters | ||
########################################## | ||
IF_SAVE_DATA: 1 | ||
# to load connectivity matrix from MAT_PATH | ||
IF_LOAD_MAT: 1 | ||
# to save connectivity matrix from MAT_PATH | ||
IF_SAVE_MAT: 0 | ||
|
||
IF_REC_SPIKE: 0 | ||
|
||
# saving the last T_SAVE ms | ||
T_SAVE: 1000.0 | ||
|
||
# path for the output files of the simulation | ||
DATA_PATH: /home/leon/models/lif_cpp/data/simul | ||
# path to load/save the connectivity matrix | ||
MAT_PATH: /home/leon/models/lif_cpp/data/matrix | ||
|
||
# output different prompts for debugging purpose | ||
verbose: 1 | ||
N: 10000 | ||
N_POP: 1 | ||
K: 1000.0 | ||
|
||
FRAC: [1.0] | ||
# Time step in ms | ||
DT: 0.1 | ||
# total simulation time in ms | ||
DURATION: 5000.0 | ||
# time to start showing simulation result ms | ||
T_STEADY: 0.0 | ||
# Saving to files every T_WINDOW in ms | ||
T_WINDOW: 250.0 | ||
|
||
########################################## | ||
# Network parameters | ||
########################################## | ||
# Total number of neurons | ||
N: 40000 | ||
# Number of populations | ||
N_POP: 2 | ||
# Average number of presynaptic inputs | ||
K: 4000.0 | ||
# K: 4000.0 | ||
# Fraction of neurons in each population | ||
FRAC: [0.8, 0.2] | ||
|
||
DT: 0.01 | ||
DURATION: 1000.0 | ||
T_WINDOW: 10. | ||
########################################## | ||
# Parameters for the stimulus presentation | ||
########################################## | ||
# stimulus has a cosine shape | ||
# time for stimulus onset/offset in ms | ||
T_STIM: [1000.0, 1500.0] | ||
# amplitude of the stimulus | ||
A_STIM: [0.2, 0.0] | ||
# std of the stimulus | ||
STD_STIM: [0.0, 0.0] | ||
# Phase of the 1st stimulus | ||
PHI_STIM: [180.0, 0.0] | ||
|
||
# Lif Model | ||
V_THRESH: 1.0 | ||
V_REST: 0.0 | ||
V_LEAK: 0.0 | ||
# Tuning of the stimulus | ||
KAPPA_STIM: [1.0, 0.0] | ||
|
||
TAU_MEM: [1.0] | ||
TAU_SYN: [1.0] | ||
T_DIST: [135000.0, 145000.0] | ||
# amplitude of the stimulus | ||
A_DIST: [0.0, 0.0] | ||
# std of the stimulus | ||
STD_DIST: [0.0, 0.0] | ||
# Phase of the 1st stimulus | ||
PHI_DIST: [90.0, 0.0] | ||
# Tuning of the stimulus | ||
KAPPA_DIST: [0.0, 0.0] | ||
|
||
CHECK_BISTABILITY: 0 | ||
BUMP_SWITCH: [0, 0] | ||
############## | ||
# Network Dynamics | ||
############## | ||
# Threshold in mV | ||
V_THRESH: -50.0 | ||
# Resting potential in mV | ||
V_REST: -70.0 | ||
# Leak in mV | ||
V_LEAK: -50.0 | ||
# Reversal in mV | ||
V_REV: [-20.0, -20.0] | ||
|
||
# Conductance based | ||
IF_COND_BASE: 0 | ||
# Refractory period | ||
IF_THRESH_DYN: 0 | ||
# threshold adaptation | ||
DELTA_THRESH: 5.0 | ||
# absolute ref | ||
TAU_AREF: [2.0, 2.0] | ||
# refraction | ||
TAU_REF: [10.0, 10.0] | ||
|
||
# Membrane time constants in ms | ||
TAU_MEM: [20.0, 10.0] | ||
# Synaptic time constants in ms | ||
TAU_SYN: [4.0, 2.0] | ||
|
||
# Adding NMDA currents | ||
IF_NMDA: 1 | ||
# NMDA time constants in s | ||
TAU_NMDA: [80.0, 40.0] | ||
# NMDA strength ratio | ||
R_NMDA: [0.5, 0.5] | ||
|
||
# Network's gain | ||
GAIN: 1.0 | ||
Iext: [2.0] | ||
Jab: [-1.0] | ||
|
||
# Feedforward inputs strengths | ||
Iext: [2.0, 2.0] | ||
# FF rate | ||
M0: 1.0 | ||
# Synaptic strengths | ||
# Jab: [15.0, -1.35, 2.5, -2.0] | ||
# Jab: [4.5, -1.125, 0.625, -1.7] | ||
Jab: [3.5, -0.85, 0.6, -1.27] | ||
|
||
############## | ||
# CONNECTIVITY | ||
############## | ||
# PROBA can be 'cos', 'spec', 'gauss', 'None' | ||
# By default the matrix is a random sparse matrix Cij | ||
# 'cos' gives a sparse matrix with strong cosine structure, | ||
# Pij = (1 + KAPPA cos(theta_ij) / sqrt(Kb)), Cij = 1 with proba Pij | ||
# 'spec' gives a sparse matrix with weak cosine structure, | ||
# Pij = (1 + KAPPA cos(theta_ij) / sqrt(Kb)) , Cij = 1 with proba Pij | ||
|
||
PROBA: ['cos', 'cos', 'cos', 'cos'] | ||
KAPPA: [1.0, 0.95, 1.0, 1.0] | ||
|
||
# PROBA: ['spec', 'rand', 'rand', 'rand'] | ||
# KAPPA: [10.0, 0.0, 0.0, 0.0] | ||
|
||
# PROBA: ['lr', 'rand', 'rand', 'rand'] | ||
# KAPPA: [3.0, 0.0, 0.0, 0.0] | ||
|
||
############## | ||
# STP | ||
############## | ||
# adds STP (as in Mato & Hansel, J Neurosci, 2012) | ||
IF_STP: 1 | ||
IS_STP: [1, 0, 0, 0] | ||
USE: [0.03, 0.05, 0.5, 0.05] | ||
TAU_FAC: [600, 400.0, 250, 400] | ||
TAU_REC: [250, 850, 600, 850] | ||
|
||
############################ | ||
# Feed Forward Input | ||
############################ | ||
# adds gaussian noise to feedforward | ||
IF_FF_NOISE: 0 | ||
# variance of the noise | ||
STD_FF: [0.01, 0.01] | ||
|
||
# adds cosine correlation to the feedforward | ||
IF_FF_CORR: 2 | ||
# amplitude of the correlations | ||
A_CORR: [2.0, 1.7] | ||
# tuning of the correlations | ||
CORR_FF: [0.01, 0.01] | ||
|
||
#################### | ||
# Low rank | ||
#################### | ||
LR_SEED: 1 | ||
LR_LOAD: 0 | ||
|
||
LR_RANK: 3 | ||
LR_MEAN: [0.0, 0.0, 0.0] | ||
LR_STD: [1.0, 1.0, 1.0] | ||
# ksi_1 ksi_2, ksi_1 h_s, ksi_2 h_s | ||
# LR_RHO: [0.05, 0.8, 0.2] | ||
# LR_RHO: [0.0, 0.8, -0.2] | ||
LR_RHO: [0.0, 1.0, 0.0] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
########################################## | ||
# Simulation parameters | ||
########################################## | ||
IF_SAVE_DATA: 1 | ||
# to load connectivity matrix from MAT_PATH | ||
IF_LOAD_MAT: 1 | ||
# to save connectivity matrix from MAT_PATH | ||
IF_SAVE_MAT: 0 | ||
|
||
IF_REC_SPIKE: 0 | ||
|
||
# saving the last T_SAVE ms | ||
T_SAVE: 1000.0 | ||
|
||
# path for the output files of the simulation | ||
DATA_PATH: /home/leon/models/lif_cpp/data/simul | ||
# path to load/save the connectivity matrix | ||
MAT_PATH: /home/leon/models/lif_cpp/data/matrix | ||
|
||
# output different prompts for debugging purpose | ||
verbose: 1 | ||
|
||
# Time step in ms | ||
DT: 0.1 | ||
# total simulation time in ms | ||
DURATION: 5000.0 | ||
# time to start showing simulation result ms | ||
T_STEADY: 0.0 | ||
# Saving to files every T_WINDOW in ms | ||
T_WINDOW: 250.0 | ||
|
||
########################################## | ||
# Network parameters | ||
########################################## | ||
# Total number of neurons | ||
N: 40000 | ||
# Number of populations | ||
N_POP: 2 | ||
# Average number of presynaptic inputs | ||
K: 4000.0 | ||
# K: 4000.0 | ||
# Fraction of neurons in each population | ||
FRAC: [0.8, 0.2] | ||
|
||
########################################## | ||
# Parameters for the stimulus presentation | ||
########################################## | ||
# stimulus has a cosine shape | ||
# time for stimulus onset/offset in ms | ||
T_STIM: [1000.0, 1500.0] | ||
# amplitude of the stimulus | ||
A_STIM: [0.2, 0.0] | ||
# std of the stimulus | ||
STD_STIM: [0.0, 0.0] | ||
# Phase of the 1st stimulus | ||
PHI_STIM: [180.0, 0.0] | ||
|
||
# Tuning of the stimulus | ||
KAPPA_STIM: [1.0, 0.0] | ||
|
||
T_DIST: [135000.0, 145000.0] | ||
# amplitude of the stimulus | ||
A_DIST: [0.0, 0.0] | ||
# std of the stimulus | ||
STD_DIST: [0.0, 0.0] | ||
# Phase of the 1st stimulus | ||
PHI_DIST: [90.0, 0.0] | ||
# Tuning of the stimulus | ||
KAPPA_DIST: [0.0, 0.0] | ||
|
||
CHECK_BISTABILITY: 0 | ||
BUMP_SWITCH: [0, 0] | ||
############## | ||
# Network Dynamics | ||
############## | ||
# Threshold in mV | ||
V_THRESH: -50.0 | ||
# Resting potential in mV | ||
V_REST: -70.0 | ||
# Leak in mV | ||
V_LEAK: -50.0 | ||
# Reversal in mV | ||
V_REV: [-20.0, -20.0] | ||
|
||
# Conductance based | ||
IF_COND_BASE: 0 | ||
# Refractory period | ||
IF_THRESH_DYN: 0 | ||
# threshold adaptation | ||
DELTA_THRESH: 5.0 | ||
# absolute ref | ||
TAU_AREF: [2.0, 2.0] | ||
# refraction | ||
TAU_REF: [10.0, 10.0] | ||
|
||
# Membrane time constants in ms | ||
TAU_MEM: [20.0, 10.0] | ||
# Synaptic time constants in ms | ||
TAU_SYN: [4.0, 2.0] | ||
|
||
# Adding NMDA currents | ||
IF_NMDA: 1 | ||
# NMDA time constants in s | ||
TAU_NMDA: [80.0, 40.0] | ||
# NMDA strength ratio | ||
R_NMDA: [0.5, 0.5] | ||
|
||
# Network's gain | ||
GAIN: 1.0 | ||
|
||
# Feedforward inputs strengths | ||
Iext: [2.0, 2.0] | ||
# FF rate | ||
M0: 1.0 | ||
# Synaptic strengths | ||
# Jab: [15.0, -1.35, 2.5, -2.0] | ||
# Jab: [4.5, -1.125, 0.625, -1.7] | ||
Jab: [3.5, -0.85, 0.6, -1.27] | ||
|
||
############## | ||
# CONNECTIVITY | ||
############## | ||
# PROBA can be 'cos', 'spec', 'gauss', 'None' | ||
# By default the matrix is a random sparse matrix Cij | ||
# 'cos' gives a sparse matrix with strong cosine structure, | ||
# Pij = (1 + KAPPA cos(theta_ij) / sqrt(Kb)), Cij = 1 with proba Pij | ||
# 'spec' gives a sparse matrix with weak cosine structure, | ||
# Pij = (1 + KAPPA cos(theta_ij) / sqrt(Kb)) , Cij = 1 with proba Pij | ||
|
||
PROBA: ['cos', 'cos', 'cos', 'cos'] | ||
KAPPA: [1.0, 0.95, 1.0, 1.0] | ||
|
||
# PROBA: ['spec', 'rand', 'rand', 'rand'] | ||
# KAPPA: [10.0, 0.0, 0.0, 0.0] | ||
|
||
# PROBA: ['lr', 'rand', 'rand', 'rand'] | ||
# KAPPA: [3.0, 0.0, 0.0, 0.0] | ||
|
||
############## | ||
# STP | ||
############## | ||
# adds STP (as in Mato & Hansel, J Neurosci, 2012) | ||
IF_STP: 1 | ||
IS_STP: [1, 0, 0, 0] | ||
USE: [0.03, 0.05, 0.5, 0.05] | ||
TAU_FAC: [600, 400.0, 250, 400] | ||
TAU_REC: [250, 850, 600, 850] | ||
|
||
############################ | ||
# Feed Forward Input | ||
############################ | ||
# adds gaussian noise to feedforward | ||
IF_FF_NOISE: 0 | ||
# variance of the noise | ||
STD_FF: [0.01, 0.01] | ||
|
||
# adds cosine correlation to the feedforward | ||
IF_FF_CORR: 2 | ||
# amplitude of the correlations | ||
A_CORR: [2.0, 1.7] | ||
# tuning of the correlations | ||
CORR_FF: [0.01, 0.01] | ||
|
||
#################### | ||
# Low rank | ||
#################### | ||
LR_SEED: 1 | ||
LR_LOAD: 0 | ||
|
||
LR_RANK: 3 | ||
LR_MEAN: [0.0, 0.0, 0.0] | ||
LR_STD: [1.0, 1.0, 1.0] | ||
# ksi_1 ksi_2, ksi_1 h_s, ksi_2 h_s | ||
# LR_RHO: [0.05, 0.8, 0.2] | ||
# LR_RHO: [0.0, 0.8, -0.2] | ||
LR_RHO: [0.0, 1.0, 0.0] |
Oops, something went wrong.