-
Notifications
You must be signed in to change notification settings - Fork 2
Social Associative Learning and Generalization in Aging
klsea/socialAL
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
{\rtf1\ansi\ansicpg1252\cocoartf2636 \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;} {\*\expandedcolortbl;;} \margl1440\margr1440\vieww11520\viewh8400\viewkind0 \pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0 \f0\fs24 \cf0 SocialAL GitHub repo\ \ # Cleaning scripts to create files shared on OSF\ 00_data_check.R - Check trust game task data quality.\ 00_data_dictionary_demo.R - Create data dictionary for demographic and survey data.\ 00_data_dictionary_liking.R - Create data dictionary for liking data.\ 00_data_dictionary_neuro.R - Create data dictionary for neuroimaging cluster data.\ 00_data_dictionary_task.R - Create data dictionary for trust game task data.\ 00_demo_neuro.R - Calculate group means and group differences on demo and survey data.\ \ # Behavioral data analysis\ 01_check_cond_data.R - Check data quality using criteria from Gillian et al., 2016 and Decker et al., 2016.\ 03_visualize_cond.R - Graph trust game data.\ 04_analyze_with_anova.R - Quick and dirty anova analysis of task behavioral data.\ 05_linear_models.R - Analysis of task behavioral data for manuscript. \ 06_graph_linear.R - Graphs of linear models of behavioral data.\ 07_liking_ratings.R - Analysis and visualization of post-experimental liking ratings. \ \ # Computational modeling data analysis - models run in python; see modeling folder\ 10_convert_cond_data_for_modeling.R - Converts raw data into a format for use in python modeling scripts. \ 11_model_comparison.R - Pulls best-fit modeling parameters from each model for model comparison.\ 12_visualize_model.R - Pulls best-fit modeling parameters from each model for visualization.\ 13_model_parameters.R - Pulls best-fit modeling parameters for further examination of further model parameters.\ 14_model_param_table.R - Create table of group averages of model parameters for manuscript.\ 15_exploratory_correlations.R - Conduct exploratory correlations described in main text and supplemental materials.\ \ # Neuroimaging data analysis\ 20_BIDS_behavioral_data.R - Create BIDS-formatted files for behavioral data.\ 21_graph_neuro.R - visualize group differences in cluster activation.\ a_create_glm_eventfiles.m - Creates glm.mat file with event onsets for decision and feedback phases.\ b_create_time_eventfiles.m - Creates glm.mat file with pmod timing.\ c_create_rl_eventfiles.m - Creates .mat file with onsets using trial-wise estimates of PE and reputation from best fitting individual parameters from decay model, separated by trial type.\ d_all_in_one_rl_eventfiles.m - Creates .mat files like script c, but does not separate by trial type.\ e_create_rl_common_param_eventfiles.m - Creates .mat file with onsets using trial-wise estimates of PE and reputation from best fitting group-level parameters from decay model, separated by trial type.\ f_all_in_one_rl_with_control_eventfiles.m - Creates .mat files like script e, but does not separate by trial type.\ g_create_svcho_eventfiles.m - Creates a .mat file with subjective value of the chosen action using decay model estimates.\ h_create_gl_model_eventfiles.m - Creates .mat file with onsets using trial-wise estimates of PE and reputation from best fitting individual parameters from gain-loss model, separated by trial type. \ i_all_in_one_gl_model_eventfiles.m - Creates .mat files like script h, but does not separate by trial type.\ \ # Figures\ 30_figure1.R - Create figure 1 for manuscript\ 31_figure2.R - Create figure 2 for manuscript\ 32_twitter_pics.R - Create images for twitter thread\ 33_presentation_figs.R - Create images for presentation }
About
Social Associative Learning and Generalization in Aging
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published