-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9b75d5b
commit f6ea0c0
Showing
3 changed files
with
40 additions
and
50 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,73 +1,61 @@ | ||
We now set the following notation, which remains fixed for the remainder of this paper: | ||
We now set the following notation such that remains fixed for the remainder of this manuscript | ||
\begin{itemize} | ||
\setlength\itemsep{1em} | ||
\setlength\itemsep{1.6em} | ||
\item Let be a function $f\colon \mathbb{T} \to \mathbb{R}$ and $t\in\mathbb{T}^{\kappa}$ then $f^{\Delta}(t)$ | ||
is delta time-scale derivative~\cite{Bohner2001DynamicEO} of $f$ | ||
\[ | ||
f^{\Delta} (t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)} = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}, | ||
\] | ||
where $\mu(t) = \sigma(t) - t, \; \mu(t) \neq 0$ and $\sigma(t) > t$ is forward jump operator. | ||
|
||
\item $\dfrac{\partial f(t_1,\ldots,t_n)}{\Delta_i t_i}, \; f^{\Delta_i}_{t_i}(t)$ is delta partial derivative | ||
of $f\colon \Lambda^n \to \mathbb{R}$ on $n-$dimensional time scale | ||
$\Lambda^n$~\cite{bohner2004partial, ahlbrandt2002partial,JACKSON2006391}, | ||
defined as a limit | ||
\[ | ||
f^{\Delta_i}_{t_i}(t) = \lim \limits_{\substack{s_i \to t_i \\ s_i \neq \sigma_i(t_i)}} | ||
is delta timescale derivative~\cite{Bohner2001DynamicEO} | ||
\begin{align*} | ||
f^{\Delta} (t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t} | ||
\end{align*} | ||
where $\sigma(t) - t \neq 0$ and $\sigma(t) > t$ is forward jump operator. | ||
|
||
\item $\dfrac{\partial f(t_1,\ldots,t_n)}{\Delta_i t_i}$ is the delta partial derivative | ||
of $f\colon \Lambda^n \to \mathbb{R}$ on $n$-dimensional timescale | ||
$\Lambda^n$ defined via the limit~\cite{bohner2004partial, ahlbrandt2002partial,JACKSON2006391} | ||
\begin{align*} | ||
f^{\Delta_i}_{t_i}(t) = \lim \limits_{\substack{s_i \to t_i}} | ||
\frac{ | ||
f(t_1, \ldots, t_{i-1}, \sigma_i(t_i), t_{t+1}, \ldots, t_n) | ||
- f(t_1, \ldots, t_{i-1}, s_i, t_{t+1}, \ldots, t_n) | ||
}{\sigma_i(t_i) - s_i}, | ||
\] | ||
}{\sigma_i(t_i) - s_i} | ||
\end{align*} | ||
where $\sigma_i(t_i) > t_i$ and $\sigma_i(t_i) - s_i \neq 0$. | ||
|
||
\item $\qderivative{f(x)}$ is $q-$derivative~\cite{jackson_1909,ernst2000history,ernst2008different,kac2001quantum} | ||
\[ | ||
\qderivative{f(x)} = \frac{f(qx)-f(x)}{qx-x}, | ||
\] | ||
\begin{align*} | ||
\qderivative{f(x)} = \frac{f(qx)-f(x)}{qx-x} | ||
\end{align*} | ||
where $x\neq 0, \; x\in\mathbb{R}, \; q\in\mathbb{R}$. | ||
|
||
\item $\nqderivative{f(t)}$ is $q-$power derivative~\cite{aldwoah2011power} | ||
\[ | ||
\nqderivative{f(t)} = \frac{f(qt^n) - f(t)}{qt^n - t}, | ||
\] | ||
\begin{align*} | ||
\nqderivative{f(t)} = \frac{f(qt^n) - f(t)}{qt^n - t} | ||
\end{align*} | ||
where $qt^n - t \neq 0$ and $n$ is odd positive integer and $0 < q < 1$. | ||
|
||
\item $\qpowerDerivative{f(x)}$ is $q-$power derivative | ||
\[ | ||
\qpowerDerivative{f(x)} = \frac{f(x^q)-f(x)}{x^q-x}, | ||
\] | ||
\begin{align*} | ||
\qpowerDerivative{f(x)} = \frac{f(x^q)-f(x)}{x^q-x} | ||
\end{align*} | ||
where $x^q \neq x, \; x\in\mathbb{R}, \; q\in\mathbb{R}$. | ||
|
||
\item $\polynomialP{m}{b}{x}, \; x,b\in\mathbb{R}, \; m\in\mathbb{N}$ is $2m+1-$degree integer-valued polynomial~\cite{kolosov2016link} | ||
\item $\polynomialP{m}{b}{x}, \; x,b\in\mathbb{R}, \; m\in\mathbb{N}$ is $2m+1$-degree | ||
polynomial in $x,b$ | ||
\begin{equation} | ||
\polynomialP{m}{b}{x} = \sum_{k=0}^{b-1} \sum_{r=0}^{m} \coeffA{m}{r} k^r(x-k)^r, | ||
\polynomialP{m}{b}{x} = \sum_{k=0}^{b-1} \sum_{r=0}^{m} \coeffA{m}{r} k^r(x-k)^r | ||
\label{eq:polynomial_p} | ||
\end{equation} | ||
where $\coeffA{m}{r}, \; m\in\mathbb{N}$ is a real coefficient defined recursively | ||
\[ | ||
\coeffA{m}{r} = | ||
\begin{cases} | ||
(2r+1) | ||
\binom{2r}{r}, & \text{if } r=m,\\ | ||
(2r+1) \binom{2r}{r} \sum_{d=2r+1}^{m} \coeffA{m}{d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} | ||
\bernoulli{2d-2r}, & \text{if } 0 \leq r<m,\\ | ||
0, & \text{if } r<0 \text{ or } r>m, | ||
\end{cases} | ||
\] | ||
where $\bernoulli{t}$ are Bernoulli numbers~\cite{WeissteinBernoulli}. | ||
It is assumed that $\bernoulli{1}=\frac{1}{2}$. | ||
where $\coeffA{m}{r}$ is a real coefficient defined recursively, see~\cite{kolosov2016link}. | ||
|
||
\item $\mathbb{Z}$ is an integer time scale such that $\sigma(t) = t+1$ and $\mu(t) = 1$. | ||
\item $\mathbb{Z}$ is an integer timescale such that $\sigma(t) = t+1$ and $\mu(t) = 1$. | ||
|
||
\item $\mathbb{R}$ is a real time scale such that $\sigma(t) = t+\Delta t$ and $\mu(t) = \Delta t, \; \Delta t \to 0$. | ||
\item $\mathbb{R}$ is a real timescale such that $\sigma(t) = t+\Delta t$ and $\mu(t) = \Delta t, \; \Delta t \to 0$. | ||
|
||
\item $q^\mathbb{R}$ is a quantum time scale such that $\sigma(t) = qt$ and $\mu(t) = qt - t$, | ||
\item $q^\mathbb{R}$ is a quantum timescale such that $\sigma(t) = qt$ and $\mu(t) = qt - t$, | ||
[page 18~\cite{Bohner2001DynamicEO}]. | ||
|
||
\item $\mathbb{R}^q$ is a quantum power time scale such that $\sigma(t) = t^q$ and $\mu(t) = t^q - t$. | ||
\item $\mathbb{R}^q$ is a quantum power timescale such that $\sigma(t) = t^q$ and $\mu(t) = t^q - t$. | ||
|
||
\item $q^{\mathbb{R}^n}$ is a pure quantum power time scale | ||
\item $q^{\mathbb{R}^n}$ is a pure quantum power timescale | ||
such that $\sigma(t) = qt^n > t, \; 0<q<1, \; \mu(t) = qt^n - t$ and $n$ is positive | ||
odd integer~\cite{aldwoah2011power}. | ||
\end{itemize} | ||
\end{itemize} |