Skip to content

Commit

Permalink
update definitions
Browse files Browse the repository at this point in the history
  • Loading branch information
kolosovpetro committed Sep 16, 2024
1 parent 9b75d5b commit f6ea0c0
Show file tree
Hide file tree
Showing 3 changed files with 40 additions and 50 deletions.
Binary file modified out/AStudyOnDynamicEquations.pdf
Binary file not shown.
10 changes: 6 additions & 4 deletions src/sections/abstract.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,14 @@
Let be a two-dimensional timescale
$\Lambda^2 = \mathbb{T}_1 \times \mathbb{T}_2 = \{t=(x, b) \colon \; x\in\mathbb{T}_1, \; b\in\mathbb{T}_2 \}$
such that $\mathbb{T}_1 = \mathbb{T}_2$.
In this manuscript we derive and discuss the following partial dynamic equation on time scales.
In this manuscript we derive and discuss an identity that connects the timescale derivative of odd-power polynomial
with partial derivatives of polynomial $P(m,b,x)$ evaluated in particular points.
For every $t\in\mathbb{T}_1$ and $x,b\in \Lambda^2$
\[
(t^{2m+1})^{\Delta} =
\frac{\partial P(m,b,x)}{\Delta x} \bigg |_{x = t, \; b = \sigma(t)} +
\frac{\partial P(m,b,x)}{\Delta b}\bigg |_{x = t, \; b = t}
\frac{\Delta t^{2m+1}}{\Delta t} =
% \frac{\partial P(m,b,x)}{\Delta x} \bigg |_{x = t, \; b = \sigma(t)} +
\frac{\partial P(m,b,x)}{\Delta x} (m, \sigma(t), t) +
\frac{\partial P(m,b,x)}{\Delta b} (m, t, t)
\]
such that $\sigma(t) > t$ is forward jump operator.
In addition, we discuss various derivative operators in context of partial cases of above equation,
Expand Down
80 changes: 34 additions & 46 deletions src/sections/definitions-notations-and-conventions.tex
Original file line number Diff line number Diff line change
@@ -1,73 +1,61 @@
We now set the following notation, which remains fixed for the remainder of this paper:
We now set the following notation such that remains fixed for the remainder of this manuscript
\begin{itemize}
\setlength\itemsep{1em}
\setlength\itemsep{1.6em}
\item Let be a function $f\colon \mathbb{T} \to \mathbb{R}$ and $t\in\mathbb{T}^{\kappa}$ then $f^{\Delta}(t)$
is delta time-scale derivative~\cite{Bohner2001DynamicEO} of $f$
\[
f^{\Delta} (t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)} = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t},
\]
where $\mu(t) = \sigma(t) - t, \; \mu(t) \neq 0$ and $\sigma(t) > t$ is forward jump operator.

\item $\dfrac{\partial f(t_1,\ldots,t_n)}{\Delta_i t_i}, \; f^{\Delta_i}_{t_i}(t)$ is delta partial derivative
of $f\colon \Lambda^n \to \mathbb{R}$ on $n-$dimensional time scale
$\Lambda^n$~\cite{bohner2004partial, ahlbrandt2002partial,JACKSON2006391},
defined as a limit
\[
f^{\Delta_i}_{t_i}(t) = \lim \limits_{\substack{s_i \to t_i \\ s_i \neq \sigma_i(t_i)}}
is delta timescale derivative~\cite{Bohner2001DynamicEO}
\begin{align*}
f^{\Delta} (t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}
\end{align*}
where $\sigma(t) - t \neq 0$ and $\sigma(t) > t$ is forward jump operator.

\item $\dfrac{\partial f(t_1,\ldots,t_n)}{\Delta_i t_i}$ is the delta partial derivative
of $f\colon \Lambda^n \to \mathbb{R}$ on $n$-dimensional timescale
$\Lambda^n$ defined via the limit~\cite{bohner2004partial, ahlbrandt2002partial,JACKSON2006391}
\begin{align*}
f^{\Delta_i}_{t_i}(t) = \lim \limits_{\substack{s_i \to t_i}}
\frac{
f(t_1, \ldots, t_{i-1}, \sigma_i(t_i), t_{t+1}, \ldots, t_n)
- f(t_1, \ldots, t_{i-1}, s_i, t_{t+1}, \ldots, t_n)
}{\sigma_i(t_i) - s_i},
\]
}{\sigma_i(t_i) - s_i}
\end{align*}
where $\sigma_i(t_i) > t_i$ and $\sigma_i(t_i) - s_i \neq 0$.

\item $\qderivative{f(x)}$ is $q-$derivative~\cite{jackson_1909,ernst2000history,ernst2008different,kac2001quantum}
\[
\qderivative{f(x)} = \frac{f(qx)-f(x)}{qx-x},
\]
\begin{align*}
\qderivative{f(x)} = \frac{f(qx)-f(x)}{qx-x}
\end{align*}
where $x\neq 0, \; x\in\mathbb{R}, \; q\in\mathbb{R}$.

\item $\nqderivative{f(t)}$ is $q-$power derivative~\cite{aldwoah2011power}
\[
\nqderivative{f(t)} = \frac{f(qt^n) - f(t)}{qt^n - t},
\]
\begin{align*}
\nqderivative{f(t)} = \frac{f(qt^n) - f(t)}{qt^n - t}
\end{align*}
where $qt^n - t \neq 0$ and $n$ is odd positive integer and $0 < q < 1$.

\item $\qpowerDerivative{f(x)}$ is $q-$power derivative
\[
\qpowerDerivative{f(x)} = \frac{f(x^q)-f(x)}{x^q-x},
\]
\begin{align*}
\qpowerDerivative{f(x)} = \frac{f(x^q)-f(x)}{x^q-x}
\end{align*}
where $x^q \neq x, \; x\in\mathbb{R}, \; q\in\mathbb{R}$.

\item $\polynomialP{m}{b}{x}, \; x,b\in\mathbb{R}, \; m\in\mathbb{N}$ is $2m+1-$degree integer-valued polynomial~\cite{kolosov2016link}
\item $\polynomialP{m}{b}{x}, \; x,b\in\mathbb{R}, \; m\in\mathbb{N}$ is $2m+1$-degree
polynomial in $x,b$
\begin{equation}
\polynomialP{m}{b}{x} = \sum_{k=0}^{b-1} \sum_{r=0}^{m} \coeffA{m}{r} k^r(x-k)^r,
\polynomialP{m}{b}{x} = \sum_{k=0}^{b-1} \sum_{r=0}^{m} \coeffA{m}{r} k^r(x-k)^r
\label{eq:polynomial_p}
\end{equation}
where $\coeffA{m}{r}, \; m\in\mathbb{N}$ is a real coefficient defined recursively
\[
\coeffA{m}{r} =
\begin{cases}
(2r+1)
\binom{2r}{r}, & \text{if } r=m,\\
(2r+1) \binom{2r}{r} \sum_{d=2r+1}^{m} \coeffA{m}{d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r}
\bernoulli{2d-2r}, & \text{if } 0 \leq r<m,\\
0, & \text{if } r<0 \text{ or } r>m,
\end{cases}
\]
where $\bernoulli{t}$ are Bernoulli numbers~\cite{WeissteinBernoulli}.
It is assumed that $\bernoulli{1}=\frac{1}{2}$.
where $\coeffA{m}{r}$ is a real coefficient defined recursively, see~\cite{kolosov2016link}.

\item $\mathbb{Z}$ is an integer time scale such that $\sigma(t) = t+1$ and $\mu(t) = 1$.
\item $\mathbb{Z}$ is an integer timescale such that $\sigma(t) = t+1$ and $\mu(t) = 1$.

\item $\mathbb{R}$ is a real time scale such that $\sigma(t) = t+\Delta t$ and $\mu(t) = \Delta t, \; \Delta t \to 0$.
\item $\mathbb{R}$ is a real timescale such that $\sigma(t) = t+\Delta t$ and $\mu(t) = \Delta t, \; \Delta t \to 0$.

\item $q^\mathbb{R}$ is a quantum time scale such that $\sigma(t) = qt$ and $\mu(t) = qt - t$,
\item $q^\mathbb{R}$ is a quantum timescale such that $\sigma(t) = qt$ and $\mu(t) = qt - t$,
[page 18~\cite{Bohner2001DynamicEO}].

\item $\mathbb{R}^q$ is a quantum power time scale such that $\sigma(t) = t^q$ and $\mu(t) = t^q - t$.
\item $\mathbb{R}^q$ is a quantum power timescale such that $\sigma(t) = t^q$ and $\mu(t) = t^q - t$.

\item $q^{\mathbb{R}^n}$ is a pure quantum power time scale
\item $q^{\mathbb{R}^n}$ is a pure quantum power timescale
such that $\sigma(t) = qt^n > t, \; 0<q<1, \; \mu(t) = qt^n - t$ and $n$ is positive
odd integer~\cite{aldwoah2011power}.
\end{itemize}
\end{itemize}

0 comments on commit f6ea0c0

Please sign in to comment.