Skip to content
This repository has been archived by the owner on Feb 16, 2023. It is now read-only.

komodohealth/spark-sas7bdat

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SparkSQL SAS (sas7bdat) Input Library

A library for parsing SAS data (sas7bdat) with Spark SQL. This also includes a SasInputFormat designed for Hadoop mapreduce. This format is splittable when input is uncompressed thus can achieve high parallelism for a large SAS file.

This library is inspired by spark-csv and currently uses parso for parsing as it is the only public available parser that handles both forms of SAS compression (CHAR and BINARY). Note parso is licensed under GPL-3 and subsequently this library is also licensed as such.

Build Status

Requirements

This library requires Spark 1.4+

How To Use

This package is published using sbt-spark-package and linking information can be found at http://spark-packages.org/package/saurfang/spark-sas7bdat

Features

This package allows reading SAS files in local or distributed filesystem as Spark DataFrames.

Schema is automatically inferred from meta information embedded in the SAS file.

Thanks to the splittable SasInputFormat, we are able to convert a 200GB (1.5Bn rows) .sas7bdat file to .csv files using 2000 executors in under 2 minutes.

SQL API

SAS data can be queried in pure SQL by registering the data as a (temporary) table.

CREATE TEMPORARY TABLE cars
USING com.github.saurfang.sas.spark
OPTIONS (path "cars.sas7bdat")

Scala API

The recommended way to load SAS data is using the load functions in SQLContext.

import org.apache.spark.sql.SQLContext

val sqlContext = new SQLContext(sc)
val df = sqlContext.read.format("com.github.saurfang.sas.spark").load("cars.sas7bdat")
df.select("year", "model").write.format("com.databricks.spark.csv").save("newcars.csv")

You can also use the implicits from import com.github.saurfang.sas.spark._.

import org.apache.spark.sql.SQLContext
import com.github.saurfang.sas.spark._

val sqlContext = new SQLContext(sc)

val cars = sqlContext.sasFile("cars.sas7bdat")

import com.databricks.spark.csv._
cars.select("year", "model").saveAsCsvFile("newcars.csv")

SAS Export Runner

We also included a simple SasExport Spark program that converts .sas7bdat to .csv or .parquet file:

sbt "run input.sas7bdat output.csv"
sbt "run input.sas7bdat output.parquet"

To achieve more parallelism, use spark-submit script to run it on a Spark cluster. If you don't have a spark cluster, you can always run it in local mode and take advantage of multi-core.

For further flexibility, you can use spark-shell:

spark-shell --master local[4] --packages saurfang:spark-sas7bdat:1.1.4-s_2.10

In the shell you can do data analysis like:

import com.github.saurfang.sas.spark._
val random = sqlContext.sasFile("src/test/resources/random.sas7bdat").cache
//random: org.apache.spark.sql.DataFrame = [x: double, f: double]
random.count
//res13: Long = 1000000
random.filter("x > 0.4").count
//res14: Long = 599501

Caveats

  1. spark-csv writes out null as "null" in csv text output. This means if you read it back for a string type, you might actually read "null" instead of null. The safest option is to export in parquet format where null is properly recorded. See databricks/spark-csv#147 for alternative solution.

Related Work

About

Splittable SAS (.sas7bdat) Input Format for Hadoop and Spark SQL

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 74.1%
  • Scala 25.9%