-
Notifications
You must be signed in to change notification settings - Fork 0
/
CNN.py
162 lines (129 loc) · 5.45 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
import random
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
lr = 0.1
#one hot vector
def batch2onehots(labels):
one_hot = torch.zeros(labels.size()[0], 10)
for i in range(len(labels)):
num = labels[i]
one_hot[i,int(num.detach().cpu().numpy())] = 1
return one_hot
#cross validation
def n_fold(data,labels,n):
data_len = len(data)
eval_len = data_len / 5
eval_len = int(eval_len)
eval_data = data[n*eval_len: (n+1) * eval_len, :]
eval_labels = labels[n*eval_len: (n+1) * eval_len]
train_data = np.concatenate((data[(n-1)*eval_len: n*eval_len, :], data[(n+1)*eval_len:,:]),axis=0)
train_labels = np.concatenate((labels[(n-1)*eval_len: n*eval_len] ,labels[(n+1)*eval_len:]),axis=0)
return eval_data, eval_labels, train_data, train_labels
#nn architecture
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, stride=2, padding=1) #eisodos
self.mp = nn.MaxPool2d(2)
self.fc1 = nn.Linear(32*7*7,400)
self.relu = nn.LeakyReLU(0.2)
self.fc2 = nn.Linear(400,10) #sun. energopoihshs krufou epipedou
self.softmax = nn.Softmax(dim=1) #sun. energopoihshs epipedou eksodou
def forward(self, input):
x = input
x = torch.reshape(x,(x.size()[0],1,28,28))
x = self.mp(self.relu(self.conv1(x))) # hidden layer
x = self.relu(self.fc1(x.flatten(start_dim=1)))
return self.softmax(self.fc2(x)) # output layer
#custom dataset function for dataloader
class myDataset(torch.utils.data.Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
data = self.data[idx]
labels = self.labels[idx]
sample = {'data' : data, 'labels' : labels}
return sample
#read dataset
train = pd.read_csv('./mnist_train.csv')
test = pd.read_csv('./mnist_test.csv')
#from pandas to numpy
x = train.to_numpy()
#separate labels from data
labels = x[:,0]
data = x[:,1:]
#normalization [0, 1]
data = data/255
#distribution of data
occ = {}
for i in range (10):
occ[str(i)]=str(np.count_nonzero(labels == i)/600 )+"%"
fold_avg_accuracy = 0
fold_avg_loss = 0
for fold in range(5):
print("Fold:",fold)
train_fold_plot = []
eval_fold_plot = []
plt.figure()
eval_data, eval_labels, train_data, train_labels = n_fold(data, labels, fold)
eval_dataset = myDataset(eval_data, eval_labels)
train_dataset = myDataset(train_data, train_labels)
eval_dataloader = DataLoader(eval_dataset, batch_size=64, num_workers= 0)
train_dataloader = DataLoader(train_dataset, batch_size=64, num_workers= 0)
net = Net().double().to(device)
optimizer = torch.optim.SGD(net.parameters(),lr = lr, momentum=0.6)
loss_function1 = nn.MSELoss()
for epoch in range(10):
epoch_loss = 0
for j, data1 in enumerate(train_dataloader):
dedomena = data1['data'].double().to(device)
etiketes = data1['labels'].double().to(device)
goal = batch2onehots(etiketes).double().to(device)
output = net(dedomena)
loss_mse = loss_function1(output,goal)
batch_ce = torch.sum(goal*torch.log(output),dim=1)
loss_ce = -torch.mean(batch_ce)
epoch_loss += loss_mse.item()
loss_mse.backward()
optimizer.step()
net.zero_grad()
correct = 0
total = 0
with torch.no_grad():
eval_loss = 0
for eval_ind, data1 in enumerate(eval_dataloader):
dedomena = data1['data'].double().to(device)
etiketes = data1['labels'].double().to(device)
goal = batch2onehots(etiketes).double().to(device)
output = net(dedomena)
loss_mse = loss_function1(output,goal)
batch_ce = torch.sum(goal*torch.log(output),dim=1)
loss_ce = -torch.mean(batch_ce)
eval_loss += loss_mse.item()
for idx, i in enumerate(output):
if torch.argmax(i) == etiketes[idx]:
correct += 1
total += 1
avg_epochLoss = epoch_loss/len(train_dataloader)
avg_evalLoss = eval_loss/len(eval_dataloader)
train_fold_plot.append(avg_epochLoss)
eval_fold_plot.append(avg_evalLoss)
print('epoch: %d Train loss = %.4f, Eval loss = %.4f, Eval accuracy = %.3f' % (epoch, avg_epochLoss, avg_evalLoss, (correct/total)))
plt.plot(train_fold_plot)
plt.plot(eval_fold_plot)
plt.title('Fold:'+str(fold))
plt.legend(['Test Loss','Train Loss'])
fold_avg_accuracy+=(correct/total)
fold_avg_loss += avg_evalLoss
fold_avg_accuracy = fold_avg_accuracy/5
fold_avg_loss = fold_avg_loss/5