forked from biomed-AI/GraphBepi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
131 lines (127 loc) · 5.82 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import torch
import torch.nn as nn
import pytorch_lightning as pl
import torch.nn.functional as F
from EGAT import EGAT,AE
from torch.nn.utils.rnn import pad_sequence,pack_sequence,pack_padded_sequence,pad_packed_sequence
class GraphBepi(pl.LightningModule):
def __init__(
self,
feat_dim=2560, hidden_dim=256,
exfeat_dim=13, edge_dim=51,
augment_eps=0.05, dropout=0.2,
lr=1e-6, metrics=None, result_path=None
):
super().__init__()
self.metrics=metrics
self.path=result_path
# loss function
self.loss_fn=nn.BCELoss()
# Hyperparameters
self.exfeat_dim=exfeat_dim
self.augment_eps = augment_eps
self.lr = lr
self.cls = 1
bias=False
self.W_v = nn.Linear(feat_dim, hidden_dim, bias=bias)
self.W_u1 = AE(exfeat_dim,hidden_dim,hidden_dim, bias=bias)
self.edge_linear=nn.Sequential(
nn.Linear(edge_dim,hidden_dim//4, bias=True),
nn.ELU(),
)
self.gat=EGAT(2*hidden_dim,hidden_dim,hidden_dim//4,dropout)
self.lstm1 = nn.LSTM(hidden_dim,hidden_dim//2,3,batch_first=True,bidirectional=True,dropout=dropout)
self.lstm2 = nn.LSTM(hidden_dim,hidden_dim//2,3,batch_first=True,bidirectional=True,dropout=dropout)
# output
self.mlp=nn.Sequential(
nn.Linear(4*hidden_dim,hidden_dim,bias=True),
nn.ReLU(),
nn.Linear(hidden_dim,1,bias=True),
nn.Sigmoid()
)
# Initialization
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, V, edge):
h=[]
V = pad_sequence(V, batch_first=True, padding_value=0).float()
mask=V.sum(-1)!=0
if self.training and self.augment_eps > 0:
aug=torch.randn_like(V)
aug[~mask]=0
V = V+self.augment_eps * aug
mask=mask.sum(1)
feats,dssps=self.W_v(V[:,:,:-self.exfeat_dim]),self.W_u1(V[:,:,-self.exfeat_dim:])
x_gcns=[]
for i in range(len(V)):
E=self.edge_linear(edge[i]).permute(2,0,1)
x1,x2=feats[i,:mask[i]],dssps[i,:mask[i]]
x_gcn=torch.cat([x1,x2],-1)
x_gcn,E=self.gat(x_gcn,E)
x_gcns.append(x_gcn)
feats=pack_padded_sequence(feats,mask.cpu(),True,False)
dssps=pack_padded_sequence(dssps,mask.cpu(),True,False)
feats=pad_packed_sequence(self.lstm1(feats)[0],True)[0]
dssps=pad_packed_sequence(self.lstm2(dssps)[0],True)[0]
x_attns=torch.cat([feats,dssps],-1)
x_attns=[x_attns[i,:mask[i]] for i in range(len(x_attns))]
h=[torch.cat([x_attn,x_gcn],-1) for x_attn,x_gcn in zip(x_attns,x_gcns)]
h=torch.cat(h,0)
return self.mlp(h)
def training_step(self, batch, batch_idx):
feat, edge, y = batch
pred = self(feat, edge).squeeze(-1)
loss=self.loss_fn(pred,y.float())
self.log('train_loss', loss.cpu().item(), on_step=False, on_epoch=True, prog_bar=True, logger=True)
if self.metrics is not None:
result=self.metrics.calc_prc(pred.detach().clone(),y.detach().clone())
self.log('train_auc', result['AUROC'], on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
feat, edge, y = batch
pred = self(feat, edge).squeeze(-1)
return pred,y
def validation_epoch_end(self,outputs):
pred,y=[],[]
for i,j in outputs:
pred.append(i)
y.append(j)
pred=torch.cat(pred,0)
y=torch.cat(y,0)
loss=self.loss_fn(pred,y.float())
self.log('val_loss', loss.cpu().item(), on_epoch=True, prog_bar=True, logger=True)
if self.metrics is not None:
result=self.metrics(pred.detach().clone(),y.detach().clone())
self.log('val_AUROC', result['AUROC'], on_epoch=True, prog_bar=True, logger=True)
self.log('val_mcc', result['MCC'], on_epoch=True, prog_bar=True, logger=True)
self.log('val_f1', result['F1'], on_epoch=True, prog_bar=True, logger=True)
def test_step(self, batch, batch_idx):
feat, edge, y = batch
pred = self(feat, edge).squeeze(-1)
return pred,y
def test_epoch_end(self,outputs):
pred,y=[],[]
for i,j in outputs:
pred.append(i)
y.append(j)
pred=torch.cat(pred,0)
y=torch.cat(y,0)
loss=self.loss_fn(pred,y.float())
if self.path:
if not os.path.exists(self.path):
os.system(f'mkdir -p {self.path}')
torch.save({'pred':pred.cpu(),'gt':y.cpu()},f'{self.path}/result.pkl')
if self.metrics is not None:
result=self.metrics(pred.detach().clone(),y.detach().clone())
self.log('test_loss', loss.cpu().item(), on_epoch=True, prog_bar=True, logger=True)
self.log('test_AUROC', result['AUROC'], on_epoch=True, prog_bar=True, logger=True)
self.log('test_recall', result['RECALL'], on_epoch=True, prog_bar=True, logger=True)
self.log('test_precision', result['PRECISION'], on_epoch=True, prog_bar=True, logger=True)
self.log('test_f1', result['F1'], on_epoch=True, prog_bar=True, logger=True)
self.log('test_mcc', result['MCC'], on_epoch=True, prog_bar=True, logger=True)
self.log('test_bacc', result['BACC'], on_epoch=True, prog_bar=True, logger=True)
self.log('test_threshold', result['threshold'], on_epoch=True, prog_bar=True, logger=True)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), betas=(0.9, 0.99), lr=self.lr, weight_decay=1e-5, eps=1e-5)