-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
49 lines (38 loc) · 1.89 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
from typing import Tuple, Optional
Tensor = torch.Tensor
class LieDetector(nn.Module):
"""
A module for truth-lie classification using MFCC files.
"""
def __init__(self, input_size: int, hidden_size: int) -> None:
"""
Initializes an instance of the Truth-Lie Detector.
"""
super(LieDetector, self).__init__()
self.hidden_size = hidden_size
# TODO: Create a uni-directional GRU with 1 hidden layer for truth-lie classification
self.gru = torch.nn.GRU(input_size = input_size,
hidden_size = hidden_size,
num_layers = 1,
bidirectional = False)
# TODO: After running the data through the GRU, perform an affine projection of the hidden space to 2D
# TODO: space for classification (0 - truth or 1 - lie)
self.classifier = torch.nn.Linear(in_features = hidden_size,
out_features = 2)
def forward(self, inputs: Tensor, inputs_lengths: Tensor, hidden: Optional[Tuple[Tensor, Tensor]]=None) -> Tensor:
"""
Forward the inputs through the network to get the logits for the batch.
Shapes:
inputs: (seq_len, batch_size, features)
inputs_lengths: (batch_size,)
"""
_, batch_size, _ = inputs.size()
packed_inputs = torch.nn.utils.rnn.pack_padded_sequence(inputs, inputs_lengths.cpu())
packed_outputs, _ = self.gru(packed_inputs, hidden)
outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(packed_outputs)
indices = (inputs_lengths - 1).expand(self.hidden_size, batch_size).transpose(0, 1).unsqueeze(0)
pooled_outputs = torch.gather(outputs, 0, indices)
projected = self.classifier(pooled_outputs.view(batch_size, self.hidden_size))
return projected