-
Notifications
You must be signed in to change notification settings - Fork 0
/
33215_SL5_Assignment6.cpp
295 lines (244 loc) · 7.53 KB
/
33215_SL5_Assignment6.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//TSP using Branch and Bound
#include <iostream>
#include <vector>
#include <queue>
#include <utility>
#include <cstring>
#include <climits>
using namespace std;
// N is number of total nodes on the graph or the cities in the map
#define N 5
// Sentinal value for representing infinity
#define INF INT_MAX
// State Space Tree nodes
struct Node
{
// stores edges of state space tree
// helps in tracing path when answer is found
vector<pair<int, int>> path;
// stores the reduced matrix
int reducedMatrix[N][N];
// stores the lower bound
int cost;
//stores current city number
int vertex;
// stores number of cities visited so far
int level;
};
// Function to allocate a new node (i, j) corresponds to visiting
// city j from city i
Node* newNode(int parentMatrix[N][N], vector<pair<int, int>> const &path,
int level, int i, int j)
{
Node* node = new Node;
// stores ancestors edges of state space tree
node->path = path;
// skip for root node
if (level != 0)
// add current edge to path
node->path.push_back(make_pair(i, j));
// copy data from parent node to current node
memcpy(node->reducedMatrix, parentMatrix,
sizeof node->reducedMatrix);
// Change all entries of row i and column j to infinity
// skip for root node
for (int k = 0; level != 0 && k < N; k++)
{
// set outgoing edges for city i to infinity
node->reducedMatrix[i][k] = INF;
// set incoming edges to city j to infinity
node->reducedMatrix[k][j] = INF;
}
// Set (j, 0) to infinity
// here start node is 0
node->reducedMatrix[j][0] = INF;
// set number of cities visited so far
node->level = level;
// assign current city number
node->vertex = j;
// return node
return node;
}
// Function to reduce each row in such a way that
// there must be at least one zero in each row
int rowReduction(int reducedMatrix[N][N], int row[N])
{
// initialize row array to INF
fill_n(row, N, INF);
// row[i] contains minimum in row i
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
if (reducedMatrix[i][j] < row[i])
row[i] = reducedMatrix[i][j];
// reduce the minimum value from each element in each row
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
if (reducedMatrix[i][j] != INF && row[i] != INF)
reducedMatrix[i][j] -= row[i];
}
// Function to reduce each column in such a way that
// there must be at least one zero in each column
int columnReduction(int reducedMatrix[N][N], int col[N])
{
// initialize col array to INF
fill_n(col, N, INF);
// col[j] contains minimum in col j
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
if (reducedMatrix[i][j] < col[j])
col[j] = reducedMatrix[i][j];
// reduce the minimum value from each element in each column
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
if (reducedMatrix[i][j] != INF && col[j] != INF)
reducedMatrix[i][j] -= col[j];
}
// Function to get the lower bound on
// on the path starting at current min node
int calculateCost(int reducedMatrix[N][N])
{
// initialize cost to 0
int cost = 0;
// Row Reduction
int row[N];
rowReduction(reducedMatrix, row);
// Column Reduction
int col[N];
columnReduction(reducedMatrix, col);
// the total expected cost
// is the sum of all reductions
for (int i = 0; i < N; i++)
cost += (row[i] != INT_MAX) ? row[i] : 0,
cost += (col[i] != INT_MAX) ? col[i] : 0;
return cost;
}
// print list of cities visited following least cost
void printPath(vector<pair<int, int>> const &list)
{
for (int i = 0; i < list.size(); i++)
cout << list[i].first + 1 << " -> "
<< list[i].second + 1 << endl;
}
// Comparison object to be used to order the heap
struct comp {
bool operator()(const Node* lhs, const Node* rhs) const
{
return lhs->cost > rhs->cost;
}
};
// Function to solve Traveling Salesman Problem using Branch and Bound
int solve(int costMatrix[N][N])
{
// Create a priority queue to store live nodes of search tree;
priority_queue<Node*, std::vector<Node*>, comp> pq;
vector<pair<int, int>> v;
// create a root node and calculate its cost
// The TSP starts from first city i.e. node 0
Node* root = newNode(costMatrix, v, 0, -1, 0);
// get the lower bound of the path starting at node 0
root->cost = calculateCost(root->reducedMatrix);
// Add root to list of live nodes;
pq.push(root);
// Finds a live node with least cost, add its children to list of
// live nodes and finally deletes it from the list
while (!pq.empty())
{
// Find a live node with least estimated cost
Node* min = pq.top();
// The found node is deleted from the list of live nodes
pq.pop();
// i stores current city number
int i = min->vertex;
// if all cities are visited
if (min->level == N - 1)
{
// return to starting city
min->path.push_back(make_pair(i, 0));
// print list of cities visited;
printPath(min->path);
// return optimal cost
return min->cost;
}
// do for each child of min
// (i, j) forms an edge in space tree
for (int j = 0; j < N; j++)
{
if (min->reducedMatrix[i][j] != INF)
{
// create a child node and calculate its cost
Node* child = newNode(min->reducedMatrix, min->path,
min->level + 1, i, j);
/* Cost of the child =
cost of parent node +
cost of the edge(i, j) +
lower bound of the path starting at node j
*/
child->cost = min->cost + min->reducedMatrix[i][j]
+ calculateCost(child->reducedMatrix);
// Add child to list of live nodes
pq.push(child);
}
}
// free node as we have already stored edges (i, j) in vector.
// So no need for parent node while printing solution.
delete min;
}
}
// main function
int main()
{
// cost matrix for traveling salesman problem.
/*
int costMatrix[N][N] =
{
{INF, 5, INF, 6, 5, 4},
{5, INF, 2, 4, 3, INF},
{INF, 2, INF, 1, INF, INF},
{6, 4, 1, INF, 7, INF},
{5, 3, INF, 7, INF, 3},
{4, INF, INF, INF, 3, INF}
};
*/
// cost 34
int costMatrix[N][N] =
{
{ INF, 10, 8, 9, 7 },
{ 10, INF, 10, 5, 6 },
{ 8, 10, INF, 8, 9 },
{ 9, 5, 8, INF, 6 },
{ 7, 6, 9, 6, INF }
};
/*
// cost 16
int costMatrix[N][N] =
{
{INF, 3, 1, 5, 8},
{3, INF, 6, 7, 9},
{1, 6, INF, 4, 2},
{5, 7, 4, INF, 3},
{8, 9, 2, 3, INF}
};
*/
/*
// cost 8
int costMatrix[N][N] =
{
{INF, 2, 1, INF},
{2, INF, 4, 3},
{1, 4, INF, 2},
{INF, 3, 2, INF}
};
*/
/*
// cost 12
int costMatrix[N][N] =
{
{INF, 5, 4, 3},
{3, INF, 8, 2},
{5, 3, INF, 9},
{6, 4, 3, INF}
};
*/
cout << "\n\nTotal Cost is " << solve(costMatrix);
return 0;
}