Skip to content

Keras, Tensorflow eager execution implementation of Neural Processes

Notifications You must be signed in to change notification settings

kristpapadopoulos/neural-processes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 

Repository files navigation

Neural Processes

Keras, Tensorflow Probability and Eager Execution Implementation

Neural Processes for 1D regression implemented as per paper: Neural Processes

Code developed from:

  1. Kasper Martens: https://kasparmartens.rbind.io/post/np/

  2. Chris Orm https://chrisorm.github.io/NGP.html

File: np_v0.1.py - Oct 11, 2018

  • Tensorflow 1.10.0
  • Numpy 1.14.5
  • Epochs = 10001
  • Learning Rate = 0.001

Items for further development:

  • Deeper and wider layers
  • Different activation functions
  • Different priors and latent space transformations
  • Learning over mutiple related functions

Figures: 30 Neural Process Function Draws for Different Training Epochs

  • training context x range -2 to 2 and output range sin(x)
  • test x range -10 to 10 to estimate posterior function samples

posterior_0 posterior_1000 posterior_2000 posterior_3000 posterior_4000 posterior_5000