-
Notifications
You must be signed in to change notification settings - Fork 123
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add TorchServe Huggingface accelerate example (#304)
* Add LLM example for huggingface accelerate Signed-off-by: Dan Sun <dsun20@bloomberg.net> * Add inputs Signed-off-by: Dan Sun <dsun20@bloomberg.net> * Update storage uri Signed-off-by: Dan Sun <dsun20@bloomberg.net> * Add to LLM runtime to index Signed-off-by: Dan Sun <dsun20@bloomberg.net> --------- Signed-off-by: Dan Sun <dsun20@bloomberg.net>
- Loading branch information
Showing
7 changed files
with
305 additions
and
0 deletions.
There are no files selected for viewing
89 changes: 89 additions & 0 deletions
89
docs/modelserving/v1beta1/llm/torchserve/accelerate/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
# Serve Large Language Model with Huggingface Accelerate | ||
|
||
This documentation explains how KServe supports large language model serving via `TorchServe`. | ||
The large language refers to the models that are not able to fit into a single GPU, and they need | ||
to be sharded onto multiple partitions over multiple GPUs. | ||
|
||
Huggingface Accelerate can load sharded checkpoints and the maximum RAM usage will be the size of | ||
the largest shard. By setting `device_map` to true, `Accelerate` automatically determines where | ||
to put each layer of the model depending on the available resources. | ||
|
||
|
||
## Package the model | ||
|
||
1. Download the model `bigscience/bloom-7b1` from Huggingface Hub by running | ||
```bash | ||
python Download_model.py --model_name bigscience/bloom-7b1 | ||
``` | ||
|
||
1. Compress the model | ||
```bash | ||
zip -r model.zip model/models--bigscience-bloom-7b1/snapshots/5546055f03398095e385d7dc625e636cc8910bf2/ | ||
``` | ||
|
||
1. Package the model | ||
Create the `setup_config.json` file with accelerate settings: | ||
* Enable `low_cpu_mem_usage` to use accelerate | ||
* Recommended `max_memory` in setup_config.json is the max size of shard. | ||
```json | ||
{ | ||
"revision": "main", | ||
"max_memory": { | ||
"0": "10GB", | ||
"cpu": "10GB" | ||
}, | ||
"low_cpu_mem_usage": true, | ||
"device_map": "auto", | ||
"offload_folder": "offload", | ||
"offload_state_dict": true, | ||
"torch_dtype":"float16", | ||
"max_length":"80" | ||
} | ||
``` | ||
|
||
```bash | ||
torch-model-archiver --model-name bloom7b1 --version 1.0 --handler custom_handler.py --extra-files model.zip,setup_config.json | ||
``` | ||
|
||
1. Upload to your cloud storage, or you can use the uploaded bloom model from KServe GCS bucket. | ||
|
||
## Serve the large language model with InferenceService | ||
|
||
```yaml | ||
apiVersion: serving.kserve.io/v1beta1 | ||
kind: InferenceService | ||
metadata: | ||
name: "bloom7b1" | ||
spec: | ||
predictor: | ||
pytorch: | ||
runtimeVersion: 0.8.2 | ||
storageUri: gs://kfserving-examples/models/torchserve/llm/Huggingface_accelerate/bloom | ||
resources: | ||
limits: | ||
cpu: "2" | ||
memory: 32Gi | ||
nvidia.com/gpu: "2" | ||
requests: | ||
cpu: "2" | ||
memory: 32Gi | ||
nvidia.com/gpu: "2" | ||
``` | ||
## Run the Inference | ||
Now, assuming that your ingress can be accessed at | ||
`${INGRESS_HOST}:${INGRESS_PORT}` or you can follow [this instruction](../../../../../get_started/first_isvc.md#4-determine-the-ingress-ip-and-ports) | ||
to find out your ingress IP and port. | ||
|
||
```bash | ||
SERVICE_HOSTNAME=$(kubectl get inferenceservice bloom7b1 -o jsonpath='{.status.url}' | cut -d "/" -f 3) | ||
curl -v \ | ||
-H "Host: ${SERVICE_HOSTNAME}" \ | ||
-H "Content-Type: application/json" \ | ||
-d @./text.json \ | ||
http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/bloom7b1:predict | ||
{"predictions":["My dog is cute.\nNice.\n- Hey, Mom.\n- Yeah?\nWhat color's your dog?\n- It's gray.\n- Gray?\nYeah.\nIt looks gray to me.\n- Where'd you get it?\n- Well, Dad says it's kind of...\n- Gray?\n- Gray.\nYou got a gray dog?\n- It's gray.\n- Gray.\nIs your dog gray?\nAre you sure?\nNo.\nYou sure"]} | ||
``` |
18 changes: 18 additions & 0 deletions
18
docs/modelserving/v1beta1/llm/torchserve/accelerate/bloom.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
apiVersion: serving.kserve.io/v1beta1 | ||
kind: InferenceService | ||
metadata: | ||
name: "bloom-7b1" | ||
spec: | ||
predictor: | ||
pytorch: | ||
image: 0.8.2 | ||
storageUri: gs://kfserving-examples/models/torchserve/llm/Huggingface_accelerate/bloom | ||
resources: | ||
limits: | ||
cpu: "2" | ||
memory: 32Gi | ||
nvidia.com/gpu: "2" | ||
requests: | ||
cpu: "2" | ||
memory: 32Gi | ||
nvidia.com/gpu: "2" |
13 changes: 13 additions & 0 deletions
13
docs/modelserving/v1beta1/llm/torchserve/accelerate/config.properties
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
inference_address=http://0.0.0.0:8085 | ||
management_address=http://0.0.0.0:8085 | ||
metrics_address=http://0.0.0.0:8082 | ||
grpc_inference_port=7070 | ||
grpc_management_port=7071 | ||
enable_metrics_api=true | ||
metrics_format=prometheus | ||
number_of_netty_threads=4 | ||
number_of_gpu=2 | ||
job_queue_size=10 | ||
enable_envvars_config=true | ||
model_store=/mnt/models/model-store | ||
model_snapshot={"name":"startup.cfg","modelCount":1,"models":{"bloom7b1":{"1.0":{"defaultVersion":true,"marName":"bloom7b1.mar","minWorkers":1,"maxWorkers":5,"batchSize":1,"maxBatchDelay":5000,"responseTimeout":120}}}} |
164 changes: 164 additions & 0 deletions
164
docs/modelserving/v1beta1/llm/torchserve/accelerate/custom_handler.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
import json | ||
import logging | ||
import os | ||
import zipfile | ||
from abc import ABC | ||
|
||
import torch | ||
import transformers | ||
from transformers import BloomForCausalLM, BloomTokenizerFast | ||
|
||
from ts.torch_handler.base_handler import BaseHandler | ||
|
||
logger = logging.getLogger(__name__) | ||
logger.info("Transformers version %s", transformers.__version__) | ||
|
||
|
||
TORCH_DTYPES = { | ||
"float16": torch.float16, | ||
"float32": torch.float32, | ||
"float64": torch.float64, | ||
} | ||
|
||
|
||
class TransformersSeqClassifierHandler(BaseHandler, ABC): | ||
""" | ||
Transformers handler class for sequence, token classification and question answering. | ||
""" | ||
|
||
def __init__(self): | ||
super(TransformersSeqClassifierHandler, self).__init__() | ||
self.initialized = False | ||
|
||
def initialize(self, ctx): | ||
"""In this initialize function, the BERT model is loaded and | ||
the Layer Integrated Gradients Algorithm for Captum Explanations | ||
is initialized here. | ||
Args: | ||
ctx (context): It is a JSON Object containing information | ||
pertaining to the model artifacts parameters. | ||
""" | ||
self.manifest = ctx.manifest | ||
properties = ctx.system_properties | ||
model_dir = properties.get("model_dir") | ||
|
||
self.device = torch.device( | ||
"cuda:" + str(properties.get("gpu_id")) | ||
if torch.cuda.is_available() and properties.get("gpu_id") is not None | ||
else "cpu" | ||
) | ||
# Loading the model and tokenizer from checkpoint and config files based on the user's choice of mode | ||
# further setup config can be added. | ||
with zipfile.ZipFile(model_dir + "/model.zip", "r") as zip_ref: | ||
zip_ref.extractall(model_dir + "/model") | ||
|
||
# read configs for the mode, model_name, etc. from setup_config.json | ||
setup_config_path = os.path.join(model_dir, "setup_config.json") | ||
if os.path.isfile(setup_config_path): | ||
with open(setup_config_path) as setup_config_file: | ||
self.setup_config = json.load(setup_config_file) | ||
else: | ||
logger.warning("Missing the setup_config.json file.") | ||
|
||
self.model = BloomForCausalLM.from_pretrained( | ||
model_dir + "/model", | ||
revision=self.setup_config["revision"], | ||
max_memory={ | ||
int(key) if key.isnumeric() else key: value | ||
for key, value in self.setup_config["max_memory"].items() | ||
}, | ||
low_cpu_mem_usage=self.setup_config["low_cpu_mem_usage"], | ||
device_map=self.setup_config["device_map"], | ||
offload_folder=self.setup_config["offload_folder"], | ||
offload_state_dict=self.setup_config["offload_state_dict"], | ||
torch_dtype=TORCH_DTYPES[self.setup_config["torch_dtype"]], | ||
) | ||
|
||
self.tokenizer = BloomTokenizerFast.from_pretrained( | ||
model_dir + "/model", return_tensors="pt" | ||
) | ||
|
||
self.model.eval() | ||
logger.info("Transformer model from path %s loaded successfully", model_dir) | ||
|
||
self.initialized = True | ||
|
||
def preprocess(self, requests): | ||
"""Basic text preprocessing, based on the user's chocie of application mode. | ||
Args: | ||
requests (str): The Input data in the form of text is passed on to the preprocess | ||
function. | ||
Returns: | ||
list : The preprocess function returns a list of Tensor for the size of the word tokens. | ||
""" | ||
input_ids_batch = None | ||
attention_mask_batch = None | ||
for idx, data in enumerate(requests): | ||
input_text = data.get("data") | ||
if input_text is None: | ||
input_text = data.get("body") | ||
if isinstance(input_text, (bytes, bytearray)): | ||
input_text = input_text.decode("utf-8") | ||
|
||
max_length = self.setup_config["max_length"] | ||
logger.info("Received text: '%s'", input_text) | ||
|
||
inputs = self.tokenizer.encode_plus( | ||
input_text, | ||
max_length=int(max_length), | ||
pad_to_max_length=True, | ||
add_special_tokens=True, | ||
return_tensors="pt", | ||
) | ||
|
||
input_ids = inputs["input_ids"].to(self.device) | ||
attention_mask = inputs["attention_mask"].to(self.device) | ||
# making a batch out of the recieved requests | ||
# attention masks are passed for cases where input tokens are padded. | ||
if input_ids.shape is not None: | ||
if input_ids_batch is None: | ||
input_ids_batch = input_ids | ||
attention_mask_batch = attention_mask | ||
else: | ||
input_ids_batch = torch.cat((input_ids_batch, input_ids), 0) | ||
attention_mask_batch = torch.cat( | ||
(attention_mask_batch, attention_mask), 0 | ||
) | ||
return (input_ids_batch, attention_mask_batch) | ||
|
||
def inference(self, input_batch): | ||
"""Predict the class (or classes) of the received text using the | ||
serialized transformers checkpoint. | ||
Args: | ||
input_batch (list): List of Text Tensors from the pre-process function is passed here | ||
Returns: | ||
list : It returns a list of the predicted value for the input text | ||
""" | ||
(input_ids_batch, _) = input_batch | ||
inferences = [] | ||
input_ids_batch = input_ids_batch.to(self.device) | ||
outputs = self.model.generate( | ||
input_ids_batch, | ||
do_sample=True, | ||
max_new_tokens=int(self.setup_config["max_length"]), | ||
top_p=0.95, | ||
top_k=60, | ||
) | ||
for i, _ in enumerate(outputs): | ||
inferences.append( | ||
self.tokenizer.decode(outputs[i], skip_special_tokens=True) | ||
) | ||
|
||
logger.info("Generated text: '%s'", inferences) | ||
|
||
print("Generated text", inferences) | ||
return inferences | ||
|
||
def postprocess(self, inference_output): | ||
"""Post Process Function converts the predicted response into Torchserve readable format. | ||
Args: | ||
inference_output (list): It contains the predicted response of the input text. | ||
Returns: | ||
(list): Returns a list of the Predictions and Explanations. | ||
""" | ||
return inference_output |
13 changes: 13 additions & 0 deletions
13
docs/modelserving/v1beta1/llm/torchserve/accelerate/setup_config.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
{ | ||
"revision": "main", | ||
"max_memory": { | ||
"0": "10GB", | ||
"cpu": "10GB" | ||
}, | ||
"low_cpu_mem_usage": true, | ||
"device_map": "auto", | ||
"offload_folder": "offload", | ||
"offload_state_dict": true, | ||
"torch_dtype":"float16", | ||
"max_length":"80" | ||
} |
5 changes: 5 additions & 0 deletions
5
docs/modelserving/v1beta1/llm/torchserve/accelerate/text.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
{ | ||
"instances": [ | ||
"Today the weather is really nice and I am planning on" | ||
] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters