forked from soobinseo/Tacotron-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
data.py
182 lines (136 loc) · 5.54 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import hyperparams as hp
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import os
import librosa
import numpy as np
from Tacotron.text import text_to_sequence
import collections
from scipy import signal
class LJDatasets(Dataset):
"""LJSpeech dataset."""
def __init__(self, csv_file, root_dir):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the wavs.
"""
self.landmarks_frame = pd.read_csv(csv_file, sep='|', header=None)
self.root_dir = root_dir
def load_wav(self, filename):
return librosa.load(filename, sr=hp.sample_rate)
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self, idx):
wav_name = os.path.join(self.root_dir, self.landmarks_frame.ix[idx, 0]) + '.wav'
text = self.landmarks_frame.ix[idx, 1]
text = np.asarray(text_to_sequence(text, [hp.cleaners]), dtype=np.int32)
wav = np.asarray(self.load_wav(wav_name)[0], dtype=np.float32)
sample = {'text': text, 'wav': wav}
return sample
def collate_fn(batch):
# Puts each data field into a tensor with outer dimension batch size
if isinstance(batch[0], collections.Mapping):
keys = list()
text = [d['text'] for d in batch]
wav = [d['wav'] for d in batch]
# PAD sequences with largest length of the batch
text = _prepare_data(text).astype(np.int32)
wav = _prepare_data(wav)
magnitude = np.array([spectrogram(w) for w in wav])
mel = np.array([melspectrogram(w) for w in wav])
timesteps = mel.shape[-1]
# PAD with zeros that can be divided by outputs per step
if timesteps % hp.outputs_per_step != 0:
magnitude = _pad_per_step(magnitude)
mel = _pad_per_step(mel)
return text, magnitude, mel
raise TypeError(("batch must contain tensors, numbers, dicts or lists; found {}"
.format(type(batch[0]))))
# These pre-processing functions are referred from https://github.com/keithito/tacotron
_mel_basis = None
def save_wav(wav, path):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
librosa.output.write_wav(path, wav.astype(np.int16), hp.sample_rate)
def _linear_to_mel(spectrogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def _build_mel_basis():
n_fft = (hp.num_freq - 1) * 2
return librosa.filters.mel(hp.sample_rate, n_fft, n_mels=hp.num_mels)
def _normalize(S):
return np.clip((S - hp.min_level_db) / -hp.min_level_db, 0, 1)
def _denormalize(S):
return (np.clip(S, 0, 1) * -hp.min_level_db) + hp.min_level_db
def _stft_parameters():
n_fft = (hp.num_freq - 1) * 2
hop_length = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
win_length = int(hp.frame_length_ms / 1000 * hp.sample_rate)
return n_fft, hop_length, win_length
def _amp_to_db(x):
return 20 * np.log10(np.maximum(1e-5, x))
def _db_to_amp(x):
return np.power(10.0, x * 0.05)
def preemphasis(x):
return signal.lfilter([1, -hp.preemphasis], [1], x)
def inv_preemphasis(x):
return signal.lfilter([1], [1, -hp.preemphasis], x)
def spectrogram(y):
D = _stft(preemphasis(y))
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
return _normalize(S)
def inv_spectrogram(spectrogram):
'''Converts spectrogram to waveform using librosa'''
S = _denormalize(spectrogram)
S = _db_to_amp(S + hp.ref_level_db) # Convert back to linear
return inv_preemphasis(_griffin_lim(S ** hp.power)) # Reconstruct phase
def _griffin_lim(S):
'''librosa implementation of Griffin-Lim
Based on https://github.com/librosa/librosa/issues/434
'''
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = _istft(S_complex * angles)
for i in range(hp.griffin_lim_iters):
angles = np.exp(1j * np.angle(_stft(y)))
y = _istft(S_complex * angles)
return y
def _istft(y):
_, hop_length, win_length = _stft_parameters()
return librosa.istft(y, hop_length=hop_length, win_length=win_length)
def melspectrogram(y):
D = _stft(preemphasis(y))
S = _amp_to_db(_linear_to_mel(np.abs(D)))
return _normalize(S)
def _stft(y):
n_fft, hop_length, win_length = _stft_parameters()
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8):
window_length = int(hp.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = _db_to_amp(threshold_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x:x+window_length]) < threshold:
return x + hop_length
return len(wav)
def _pad_data(x, length):
_pad = 0
return np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad)
def _prepare_data(inputs):
max_len = max((len(x) for x in inputs))
return np.stack([_pad_data(x, max_len) for x in inputs])
def _pad_per_step(inputs):
timesteps = inputs.shape[-1]
return np.pad(inputs, [[0,0],[0,0],[0, hp.outputs_per_step - (timesteps % hp.outputs_per_step)]], mode='constant', constant_values=0.0)
def get_param_size(model):
params = 0
for p in model.parameters():
tmp = 1
for x in p.size():
tmp *= x
params += tmp
return params
def get_dataset():
return LJDatasets(os.path.join(hp.data_path,'metadata.csv'), os.path.join(hp.data_path,'wavs'))