Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Aqsa #159

Open
wants to merge 15 commits into
base: master
Choose a base branch
from
41 changes: 41 additions & 0 deletions .github/workflows/black.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
name: Black Code Formatter and Security Policy

on: [push]

jobs:
format:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2

- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.8

- name: Install dependencies
run: pip install black

- name: Run Black
run: black .



build:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v2
- name: Install dependencies
run: |
sudo apt-get update
sudo apt-get install -y python3-sphinx
- name: Build documentation
run: |
sphinx-build -b html docs/ build/
- name: Publish documentation
uses: peaceiris/actions-gh-pages@v3.7.0
with:
personal_token: ${{ secrets.GH_PAGES_TOKEN }}
publish_dir: ./build/
29 changes: 29 additions & 0 deletions .github/workflows/security.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
name: Security Analysis with CodeQL

on:
push:
branches: [main]

jobs:
analyze:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v2

- name: Setup CodeQL
uses: github/codeql-action/init@v1
with:
languages: python

- name: Build CodeQL database
uses: github/codeql-action/analyze@v1
with:
query: security-features.ql
languages: python
database-path: codeql-db

- name: Upload SARIF results
uses: github/codeql-action/upload-sarif@v1
with:
sarif_file: codeql-results.sarif
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,4 +32,4 @@ python main.py --resume --lr=0.01
| [PreActResNet18](https://arxiv.org/abs/1603.05027) | 95.11% |
| [DPN92](https://arxiv.org/abs/1707.01629) | 95.16% |
| [DLA](https://arxiv.org/pdf/1707.06484.pdf) | 95.47% |

| [Xception](https://arxiv.org/abs/1610.02357) | 96.90% |
15 changes: 15 additions & 0 deletions jenkins/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
FROM jenkins/jenkins:2.375.3
USER root
RUN apt-get update && apt-get install -y lsb-release
RUN curl -fsSLo /usr/share/keyrings/docker-archive-keyring.asc \
https://download.docker.com/linux/debian/gpg
RUN echo "deb [arch=$(dpkg --print-architecture) \
signed-by=/usr/share/keyrings/docker-archive-keyring.asc] \
https://download.docker.com/linux/debian \
$(lsb_release -cs) stable" > /etc/apt/sources.list.d/docker.list
RUN apt-get update && apt-get install -y docker-ce-cli
USER jenkins
RUN jenkins-plugin-cli --plugins "blueocean docker-workflow"


# sudo docker exec id cat /var/jenkins_home/secrets/initialAdminPassword
15 changes: 8 additions & 7 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,9 @@
# net = ShuffleNetV2(1)
# net = EfficientNetB0()
# net = RegNetX_200MF()
net = SimpleDLA()
net = net.to(device)
# net = SimpleDLA()
# net = net.to(device)
net = xception(pretrained = False, num_classes=10)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
Expand Down Expand Up @@ -147,8 +148,8 @@ def test(epoch):
torch.save(state, './checkpoint/ckpt.pth')
best_acc = acc


for epoch in range(start_epoch, start_epoch+200):
train(epoch)
test(epoch)
scheduler.step()
if __name__ == '__main__':
for epoch in range(start_epoch, start_epoch+200):
train(epoch)
test(epoch)
scheduler.step()
187 changes: 187 additions & 0 deletions models/xception.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
import math
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from torch.nn import init
import torch

__all__ = ['xception']

model_urls = {
'xception':''
}


class SeparableConv2d(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size=1,stride=1,padding=0,dilation=1,bias=False):
super(SeparableConv2d,self).__init__()

self.conv1 = nn.Conv2d(in_channels,in_channels,kernel_size,stride,padding,dilation,groups=in_channels,bias=bias)
self.pointwise = nn.Conv2d(in_channels,out_channels,1,1,0,1,1,bias=bias)

def forward(self,x):
x = self.conv1(x)
x = self.pointwise(x)
return x


class Block(nn.Module):
def __init__(self,in_filters,out_filters,reps,strides=1,start_with_relu=True,grow_first=True):
super(Block, self).__init__()

if out_filters != in_filters or strides!=1:
self.skip = nn.Conv2d(in_filters,out_filters,1,stride=strides, bias=False)
self.skipbn = nn.BatchNorm2d(out_filters)
else:
self.skip=None

self.relu = nn.ReLU(inplace=True)
rep=[]

filters=in_filters
if grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters,out_filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(out_filters))
filters = out_filters

for i in range(reps-1):
rep.append(self.relu)
rep.append(SeparableConv2d(filters,filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(filters))

if not grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters,out_filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(out_filters))

if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)

if strides != 1:
rep.append(nn.MaxPool2d(3,strides,1))
self.rep = nn.Sequential(*rep)

def forward(self,inp):
x = self.rep(inp)

if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp

x+=skip
return x



class Xception(nn.Module):
"""
Xception optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1610.02357.pdf
"""
def __init__(self, num_classes=10):
""" Constructor
Args:
num_classes: number of classes
"""
super(Xception, self).__init__()


self.num_classes = num_classes

self.conv1 = nn.Conv2d(3, 32, 3,2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)

self.conv2 = nn.Conv2d(32,64,3,bias=False)
self.bn2 = nn.BatchNorm2d(64)

self.block1=Block(64,128,2,2,start_with_relu=False,grow_first=True)
self.block2=Block(128,256,2,2,start_with_relu=True,grow_first=True)
self.block3=Block(256,728,2,2,start_with_relu=True,grow_first=True)

self.block4=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block5=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block6=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block7=Block(728,728,3,1,start_with_relu=True,grow_first=True)

self.block8=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block9=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block10=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block11=Block(728,728,3,1,start_with_relu=True,grow_first=True)

self.block12=Block(728,1024,2,2,start_with_relu=True,grow_first=False)

self.conv3 = SeparableConv2d(1024,1536,3,1,1)
self.bn3 = nn.BatchNorm2d(1536)

#do relu here
self.conv4 = SeparableConv2d(1536,2048,3,1,1)
self.bn4 = nn.BatchNorm2d(2048)

self.fc = nn.Linear(2048, num_classes)


for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()





def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)

x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)

x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)

x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)

x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)

x = F.adaptive_avg_pool2d(x, (1, 1))
x = x.view(x.size(0), -1)
x = self.fc(x)

return x



def xception(pretrained=False,**kwargs):
"""
Construct Xception.
"""

model = Xception(**kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['xception']))
return model
4 changes: 2 additions & 2 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,8 @@ def init_params(net):
init.constant(m.bias, 0)


_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
# _, term_width = os.popen('stty size', 'r').read().split()
term_width = 80

TOTAL_BAR_LENGTH = 65.
last_time = time.time()
Expand Down