Skip to content

kubetrail/julia

Repository files navigation

julia

This is a go interface to julia runtime intended for single threaded and lightweight use for simple code execution.

Please start with embedding docs, which is the basic design on which this library is built.

disclaimer

The use of this tool does not guarantee security or usability for any particular purpose. Please review the code and use at your own risk.

Please also see known limitations at the end of this doc.

installation

This step assumes you have Go compiler toolchain installed on your system with version at least Go 1.18. The library makes use of go generics.

You will also need to have julia installed at /usr/local/julia which is dynamically linked using cgo.

Please note that this library is experimental and should not be used for production settings requiring multithreading and large volumes of data i/o to/from julia runtime.

It is meant for simple julia invocation from Go interface. Use with caution.

Download this repo to a folder and cd to it.

go test

usage

In the example below we create a random matrix in julia and fetch that in go. Then pass that matrix back to julia runtime and compute its inverse.

package main

import (
	"fmt"
	"log"

	"github.com/kubetrail/julia"
)

func main() {
	julia.Initialize()
	defer julia.Finalize()

	// testing inv(5,5)
	n := 5

	// create an argument to pass to julia function in the form
	// of a scalar value of int64 data type
	arg, err := julia.Marshal(int64(n))
	if err != nil {
		log.Fatal(err)
	}

	// get response from julia after evaluating a function called randn
	// in base module and passing two arguments to it of same value
	// created in the previous step
	resp, err := julia.EvalFunc("randn", julia.ModuleBase, arg, arg)
	if err != nil {
		log.Fatal(err)
	}

	// initialize a new matrix to populate it with response received above.
	// create a float64 matrix since output from randn is a float64 data type
	mat, err := julia.NewMat(make([]float64, n*n), n, n)
	if err != nil {
		log.Fatal(err)
	}

	// unmarshal response into matrix. it is important to unmarshal into
	// types that match exactly those returned by julia, otherwise you will
	// get segfaults
	if err := julia.Unmarshal(resp, mat); err != nil {
		log.Fatal(err)
	}

	// print matrix elements
	fmt.Println("rand mat:", mat.Elms)

	// now pass this matrix back to julia to compute its inverse.
	// marshaling is required to pass any data to julia runtime
	data, err := julia.Marshal(mat)
	if err != nil {
		log.Fatal(err)
	}

	// obtain response from julia runtime
	resp, err = julia.EvalFunc("inv", julia.ModuleBase, data)
	if err != nil {
		log.Fatal(err)
	}

	// unmrshal response back into the matrix since it fits perfect
	// for the data type and size
	if err := julia.Unmarshal(resp, mat); err != nil {
		log.Fatal(err)
	}

	// print elements of inverted matrix
	fmt.Println("inv mat:", mat.Elms)
}

Here is another example of matrix multiplication:

package main

import (
	"fmt"
	"log"

	"github.com/kubetrail/julia"
)

func main() {
	julia.Initialize()
	defer julia.Finalize()

	// marshal out a data type that can be passed to julia runtime
	// as an argument to a function call
	n, err := julia.Marshal(int64(5))
	if err != nil {
		log.Fatal(err)
	}

	// evaluate randn with arguments created above to create a
	// random matrix
	x, err := julia.EvalFunc("randn", julia.ModuleBase, n, n)
	if err != nil {
		log.Fatal(err)
	}

	// find inverse of the matrix
	y, err := julia.EvalFunc("inv", julia.ModuleBase, x)
	if err != nil {
		log.Fatal(err)
	}

	// then multiply matrix by its inverse and the result should
	// be very close to an identity matrix
	z, err := julia.EvalFunc("*", julia.ModuleBase, x, y)
	if err != nil {
		log.Fatal(err)
	}

	// prepare a matrix to collect the values from julia runtime
	mat, err := julia.NewMat(make([]float64, 25), 5, 5)
	if err != nil {
		log.Fatal(err)
	}

	// unmarshal julia runtime data into matrix
	if err := julia.Unmarshal(z, mat); err != nil {
		log.Fatal(err)
	}

	// print output
	fmt.Println("matrix multiplied by its inverse is an identity matrix:")
	fmt.Println(mat.Elms)
}

dockerfile

A dockerfile can be used to build these examples

docker build -t go-julia ./

Run an example in the container:

docker run --rm -it go-julia /go-julia/matrix-inversion
rand mat: [1.017768642481323 0.18851208555752758 -0.3488466841230449 0.4406143439802128 -0.9871042912008214 -2.3784718350906355 -1.8453603181415057 -0.09313474878433725 1.3359835582412696 -0.2341551927011799 0.7564688157590539 0.6625939970160911 1.7330849839849714 -1.0073081834684647 0.9176323073548744 -0.19748061907540335 1.0518872982633893 1.3556630206573586 -0.41537427531113674 1.8618622495593484 -0.08692220378171413 0.15844308568914403 1.961931713197817 -0.9674542403020966 0.6027724685356741]
inv mat: [0.017579422927962773 0.33640304238850627 2.0600006052967696 -0.4904229824862231 -1.4617453088048453 0.7276869478620276 -0.6639410803972795 -2.6019577734205965 1.0419842754172768 1.676332344686367 0.6160516767647928 0.20485388151853834 -0.06754593530676123 0.20961519218300062 0.5437915468222431 0.9668365082102905 0.510424584895026 0.3884752124354898 0.557668509045042 -0.5323606068080747 -0.642116529077303 0.3754996808917087 1.8243608863358483 -0.13181720095132604 -1.6168253384478684]
docker run --rm -it go-julia /go-julia/matrix-multiplication
matrix multiplied by its inverse is an identity matrix:
[0.9999999999999994 2.393094211668032e-16 -1.0471181754244775e-15 7.021075814654354e-16 3.076390399372395e-16 8.757211127093011e-17 0.9999999999999989 2.7294181293716953e-16 3.5320707519199396e-16 -3.2696702378511e-16 1.7145691212372143e-16 5.635048558235537e-17 1 -1.706945437414341e-16 -2.3262142907258317e-17 9.85627416443657e-17 -3.884989330059967e-16 2.2894671093460267e-16 0.9999999999999999 -3.7378253110592907e-16 -1.1418060527744768e-16 9.42406854610802e-16 -2.2780738535360076e-16 -8.110240689058509e-16 1.0000000000000002]

architecture

The library is not intended to cover all possible julia execution scenarios and meant for simple use cases where go front end is required on top of julia backend runtime.

A type-parametrized matrix type is defined:

// Mat represents the matrix for supported data types
// parameterized by primitive types
type Mat[T PrimitiveTypes] struct {
	elms []T
	dims []int
}

This is the main data structure to send and receive values between go and julia runtimes.

Furthermore, Marshal and Unmarshal functions are defined to work with Mat data structure to pack/unpack data into a julia native generic data type.

known issues

Foreign function interface to julia via its C-API should be used with caution and preferably run in a single threaded mode. Considering go allows concurrency very easily, extra care needs to be taken to ensure that julia does not run as part of multiple goroutines.