Skip to content

My implementation of "Patch n’ Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution"

License

Notifications You must be signed in to change notification settings

kyegomez/NaViT

Repository files navigation

Multi-Modality

NaViT

My implementation of "Patch n’ Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution"

Paper Link

Appreciation

  • Lucidrains
  • Agorians

Install

pip install navit-torch

Usage

import torch
from navit.main import NaViT


n = NaViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    heads = 16,
    mlp_dim=2048,
    dropout=0.1,
    emb_dropout=0.1,
    token_dropout_prob=0.1
)

images = [
    [torch.randn(3, 256, 256), torch.randn(3, 128, 128)],
    [torch.randn(3, 256, 256), torch.randn(3, 256, 128)],
    [torch.randn(3, 64, 256)]
]

preds = n(images)

Dataset Strategy

Here is a table of the key datasets and their metadata used for pretraining and evaluating NaViT:

Dataset Type Size Details Source
JFT-4B Image classification 4 billion images Private dataset from Google [1]
WebLI Image-text 73M image-text pairs Web-crawled dataset [2]
ImageNet Image classification 1.3M images, 1000 classes Standard benchmark [3]
ImageNet-A Image classification 7,500 images Out-of-distribution variant [4]
ObjectNet Image classification 50K images, 313 classes Out-of-distribution variant [5]
LVIS Object detection 120K images, 1000 classes Large vocabulary instance segmentation [6]
ADE20K Semantic segmentation 20K images, 150 classes Scene parsing dataset [7]
Kinetics-400 Video classification 300K videos, 400 classes Action recognition dataset [8]
FairFace Face attribute classification 108K images, 9 attributes Balanced dataset for facial analysis [9]
CelebA Face attribute classification 200K images, 40 attributes Face attributes dataset [10]

[1] Zhai et al. "Scaling Vision Transformers". 2022. https://arxiv.org/abs/2106.04560
[2] Chen et al. "PaLI". 2022. https://arxiv.org/abs/2209.06794 [3] Deng et al. "ImageNet". 2009. http://www.image-net.org/ [4] Hendrycks et al. "Natural Adversarial Examples". 2021. https://arxiv.org/abs/1907.07174 [5] Barbu et al. "ObjectNet". 2019. https://arxiv.org/abs/1612.03916 [6] Gupta et al. "LVIS". 2019. https://arxiv.org/abs/1908.03195 [7] Zhou et al. "ADE20K". 2017. https://arxiv.org/abs/1608.05442 [8] Kay et al. "Kinetics". 2017. https://arxiv.org/abs/1705.06950 [9] Kärkkäinen and Joo. "FairFace". 2019. https://arxiv.org/abs/1908.04913 [10] Liu et al. "CelebA". 2015. https://arxiv.org/abs/1410.5408

Todo

  • create example trainining script

License

MIT

Citations

@misc{2307.06304,
Author = {Mostafa Dehghani and Basil Mustafa and Josip Djolonga and Jonathan Heek and Matthias Minderer and Mathilde Caron and Andreas Steiner and Joan Puigcerver and Robert Geirhos and Ibrahim Alabdulmohsin and Avital Oliver and Piotr Padlewski and Alexey Gritsenko and Mario Lučić and Neil Houlsby},
Title = {Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution},
Year = {2023},
Eprint = {arXiv:2307.06304},
}

About

My implementation of "Patch n’ Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Languages