-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathvector.c
601 lines (540 loc) · 15.7 KB
/
vector.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/* Copyright (c) 2009-2013 Kyle Gorman
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* vector.c: vector and matrix data structures with associated methods
* Kyle Gorman <gormanky@ohsu.edu>
* Kyle Gorman
*/
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include "vector.h"
#ifdef __APPLE__
#include <Accelerate/Accelerate.h>
#endif
#ifndef NAN
#define NAN sqrt(-1.)
#endif
// create a vector of size xSz
vector makev(int xSz) {
vector nw_vector;
nw_vector.x = xSz;
nw_vector.v = malloc(sizeof(double) * xSz);
return(nw_vector);
}
// make a vector of zeros of size xSz
vector zerov(int xSz) {
vector nw_vector;
nw_vector.x = xSz;
nw_vector.v = calloc(sizeof(double), xSz);
return(nw_vector);
}
// make a vector of ones of size xSz
vector onesv(int xSz) {
vector nw_vector = makev(xSz);
int i;
for (i = 0; i < nw_vector.x; i++)
nw_vector.v[i] = 1.;
return(nw_vector);
}
// make a vector of NaNs of size xSz
vector nansv(int xSz) {
vector nw_vector = makev(xSz);
int i;
for (i = 0; i < nw_vector.x; i++)
nw_vector.v[i] = NAN;
return(nw_vector);
}
// make a deep copy of a vector
vector copyv(vector yr_vector) {
vector nw_vector = makev(yr_vector.x);
memcpy(nw_vector.v, yr_vector.v, sizeof(double) * yr_vector.x);
return(nw_vector);
}
// free the memory associated with the vector
void freev(vector yr_vector) {
free(yr_vector.v);
}
// print the vector
void printv(vector yr_vector) {
int i;
for (i = 0; i < yr_vector.x; i++)
printf("%f\n", yr_vector.v[i]);
}
// return the index of the maximum value of the vector
int maxv(vector yr_vector) {
int index = -1;
double val = SHRT_MIN;
int i;
for (i = 0; i < yr_vector.x; i++) {
if (yr_vector.v[i] > val) {
val = yr_vector.v[i];
index = i;
}
}
return(index);
}
// return the index of the minimum value of the vector
int minv(vector yr_vector) {
int index = -1;
double val = SHRT_MAX;
int i;
for (i = 0; i < yr_vector.x; i++) {
if (yr_vector.v[i] < val) {
val = yr_vector.v[i];
index = i;
}
}
return(index);
}
// find the bisection index of the vector for key
int bisectv(vector yr_vector, double key) {
int md;
int lo = 1;
int hi = yr_vector.x;
while (hi - lo > 1) {
md = (hi + lo) >> 1;
if (yr_vector.v[md] > key)
hi = md;
else
lo = md;
}
return(hi);
}
/* like bisectv(), but the minimum starting value is passed as an argument.
* This is good for multiple bisection calls for forming a new vector when
* the queries are a non-constant interval; but make sure to use bisectv()
* the first time.
*/
int bilookv(vector yr_vector, double key, int lo) {
int md;
int hi = yr_vector.x;
lo--;
while (hi - lo > 1) {
md = (hi + lo) >> 1;
if (yr_vector.v[md] > key)
hi = md;
else
lo = md;
}
return(hi);
}
// intvector versions of the above
intvector makeiv(int xSz) {
intvector nw_vector;
nw_vector.x = xSz;
nw_vector.v = malloc(sizeof(int) * xSz);
return(nw_vector);
}
intvector zeroiv(int xSz) {
intvector nw_vector;
nw_vector.x = xSz;
nw_vector.v = calloc(sizeof(int), xSz);
return(nw_vector);
}
intvector onesiv(int xSz) {
intvector nw_vector = makeiv(xSz);
int i;
for (i = 0; i < nw_vector.x; i++)
nw_vector.v[i] = 1;
return(nw_vector);
}
intvector copyiv(intvector yr_vector) {
intvector nw_vector = makeiv(yr_vector.x);
memcpy(nw_vector.v, yr_vector.v, sizeof(int) * nw_vector.x);
return(nw_vector);
}
// convert an intvector into a vector using implicit casts to double
vector iv2v(intvector yr_vector) {
vector nw_vector = makev(yr_vector.x);
int i;
for (i = 0; i < yr_vector.x; i++)
nw_vector.v[i] = yr_vector.v[i];
return(nw_vector);
}
void freeiv(intvector yr_vector) {
free(yr_vector.v);
}
void printiv(intvector yr_vector) {
int i;
for (i = 0; i < yr_vector.x; i++)
printf("%d\n", yr_vector.v[i]);
}
int maxiv(intvector yr_vector) {
int index = -1;
int val = SHRT_MIN;
int i;
for (i = 0; i < yr_vector.x; i++) {
if (yr_vector.v[i] > val) {
val = yr_vector.v[i];
index = i;
}
}
return(index);
}
int miniv(intvector yr_vector) {
int index = -1;
int val = SHRT_MAX;
int i;
for (i = 0; i < yr_vector.x; i++) {
if (yr_vector.v[i] < val) {
val = yr_vector.v[i];
index = i;
}
}
return(index);
}
int bisectiv(intvector yr_vector, int key) {
int md;
int lo = 1;
int hi = yr_vector.x;
while (hi - lo > 1) {
md = (hi + lo) >> 1;
if (yr_vector.v[md] > key)
hi = md;
else
lo = md;
}
return(hi);
}
int bilookiv(intvector yr_vector, int key, int lo) {
int md;
int hi = yr_vector.x;
lo--;
while (hi - lo > 1) {
md = (hi + lo) >> 1;
if (yr_vector.v[md] > key)
hi = md;
else
lo = md;
}
return(hi);
}
// matrix versions of the above
matrix makem(int xSz, int ySz) {
matrix nw_matrix;
nw_matrix.x = xSz;
nw_matrix.y = ySz;
nw_matrix.m = malloc(sizeof(double*) * xSz);
int i;
for (i = 0; i < nw_matrix.x; i++)
nw_matrix.m[i] = malloc(sizeof(double) * ySz);
return(nw_matrix);
}
matrix zerom(int xSz, int ySz) {
matrix nw_matrix;
nw_matrix.x = xSz;
nw_matrix.y = ySz;
nw_matrix.m = malloc(sizeof(double*) * xSz);
int i;
for (i = 0; i < nw_matrix.x; i++)
nw_matrix.m[i] = calloc(sizeof(double), ySz);
return(nw_matrix);
}
matrix onesm(int xSz, int ySz) {
matrix nw_matrix = makem(xSz, ySz);
int i, j;
for (i = 0; i < nw_matrix.x; i++)
for (j = 0; j < nw_matrix.y; j++)
nw_matrix.m[i][j] = 1.;
return(nw_matrix);
}
matrix nansm(int xSz, int ySz) {
matrix nw_matrix = makem(xSz, ySz);
int i, j;
for (i = 0; i < nw_matrix.x; i++)
for (j = 0; j < nw_matrix.y; j++)
nw_matrix.m[i][j] = NAN;
return(nw_matrix);
}
matrix copym(matrix yr_matrix) {
matrix nw_matrix = makem(yr_matrix.x, yr_matrix.y);
int i;
for (i = 0; i < yr_matrix.x; i++) // does not assume contiguity
memcpy(nw_matrix.m[i], yr_matrix.m[i],
sizeof(double) * yr_matrix.y);
return(nw_matrix);
}
void freem(matrix yr_matrix) {
int i;
for (i = 0; i < yr_matrix.x; i++)
free(yr_matrix.m[i]);
free(yr_matrix.m);
}
void printm(matrix yr_matrix) {
int i, j;
for (i = 0; i < yr_matrix.x; i++) {
for (j = 0; j < yr_matrix.y; j++)
printf("%f\t", yr_matrix.m[i][j]);
printf("\n");
}
}
// intmatrix versions of the above
intmatrix makeim(int xSz, int ySz) {
intmatrix nw_matrix;
nw_matrix.x = xSz;
nw_matrix.y = ySz;
nw_matrix.m = malloc(sizeof(int) * xSz);
int i;
for (i = 0; i < nw_matrix.x; i++)
nw_matrix.m[i] = malloc(sizeof(int) * ySz);
return(nw_matrix);
}
intmatrix zeroim(int xSz, int ySz) {
intmatrix nw_matrix;
nw_matrix.x = xSz;
nw_matrix.y = ySz;
nw_matrix.m = malloc(sizeof(int) * xSz);
int i;
for (i = 0; i < nw_matrix.x; i++)
nw_matrix.m[i] = calloc(sizeof(int), ySz);
return(nw_matrix);
}
intmatrix onesim(int xSz, int ySz) {
int i, j;
intmatrix nw_matrix = makeim(xSz, ySz);
for (i = 0; i < nw_matrix.x; i++)
for (j = 0; j < nw_matrix.y; j++)
nw_matrix.m[i][j] = 1;
return(nw_matrix);
}
intmatrix copyim(intmatrix yr_matrix) {
intmatrix nw_matrix = makeim(yr_matrix.x, yr_matrix.y);
int i;
for (i = 0; i < yr_matrix.x; i++) // does not assume contiguity
memcpy(nw_matrix.m[i], yr_matrix.m[i], sizeof(int) * yr_matrix.y);
return(nw_matrix);
}
matrix im2m(intmatrix yr_matrix) {
matrix nw_matrix = makem(yr_matrix.x, yr_matrix.y);
int i, j;
for (i = 0; i < yr_matrix.x; i++)
for (j = 0; j < yr_matrix.y; j++)
nw_matrix.m[i][j] = yr_matrix.m[i][j];
return(nw_matrix);
}
void freeim(intmatrix yr_matrix) {
int i;
for (i = 0; i < yr_matrix.x; i++)
free(yr_matrix.m[i]);
free(yr_matrix.m);
}
void printim(intmatrix yr_matrix) {
int i, j;
for (i = 0; i < yr_matrix.x; i++) {
for (j = 0; j < yr_matrix.y; j++)
printf("%d\t", yr_matrix.m[i][j]);
printf("\n");
}
}
// a naive Sieve of Erasthones for prime numbers
int sieve(intvector ones) {
int k = 0;
int sp = floor(sqrt(ones.x));
int i, j;
ones.v[0] = NP; // 1 is not prime, though sometimes I wish it was
for (i = 1; i < sp; i++) {
if PRIME(ones.v[i]) {
for (j = i + i + 1; j < ones.x; j += i + 1)
ones.v[j] = NP;
k++;
}
}
for (i = sp; i < ones.x; i++) { // now we're only counting
if PRIME(ones.v[i])
k++;
}
return(k);
}
intvector primes(int n) {
int i, j = 0;
intvector myOnes = onesiv(n);
intvector myPrimes = makeiv(sieve(myOnes)); // size of the # of primes
for (i = 0; i < myOnes.x; i++) // could start at 1
if PRIME(myOnes.v[i])
myPrimes.v[j++] = i + 1;
freeiv(myOnes);
return(myPrimes);
}
// cubic spline function, based on Numerical Recipes in C, 2nd ed.
vector spline(vector x, vector y) {
int i, j;
double p, qn, sig;
vector y2 = makev(x.x);
double* u = malloc((unsigned) (x.x - 1) * sizeof(double));
y2.v[0] = -.5; // left boundary
u[0] = (3. / (x.v[1] - x.v[0])) * ((y.v[1] - y.v[0]) /
(x.v[1] - x.v[0]) - YP1);
for (i = 1; i < x.x - 1; i++) { // decomp loop
sig = (x.v[i] - x.v[i - 1]) / (x.v[i + 1] - x.v[i - 1]);
p = sig * y2.v[i - 1] + 2.;
y2.v[i] = (sig - 1.) / p;
u[i] = (y.v[i + 1] - y.v[i]) / (x.v[i + 1] - x.v[i]) -
(y.v[i] - y.v[i - 1]) / (x.v[i] - x.v[i - 1]);
u[i] = (6 * u[i] / (x.v[i + 1] - x.v[i - 1]) - sig * u[i - 1]) / p;
}
qn = .5; // right boundary
y2.v[y2.x - 1] = ((3. / (x.v[x.x - 1] - x.v[x.x - 2])) * (YPN -
(y.v[y.x - 1] - y.v[y.x - 2]) / (x.v[x.x - 1] -
x.v[x.x - 2])) - qn * u[x.x - 2]) /
(qn * y2.v[y2.x - 2] + 1.);
for (j = x.x - 2; j >= 0; j--) // backsubstitution loop
y2.v[j] = y2.v[j] * y2.v[j + 1] + u[j];
free(u);
return(y2);
}
// query the cubic spline
double splinv(vector x, vector y, vector y2, double val, int hi) {
int lo = hi - 1; // find hi linearly, or using bisectv()
double h = x.v[hi] - x.v[lo];
double a = (x.v[hi] - val) / h;
double b = (val - x.v[lo]) / h;
return(a * y.v[lo] + b * y.v[hi] + ((a * a * a - a) * y2.v[lo] *
(b * b * b - b) * y2.v[hi]) * (h * h) / 6.);
}
// polynomial fitting with CLAPACK: solves poly(A, m) * X = B
vector polyfit(vector A, vector B, int degree) {
int info;
degree++; // I find it intuitive this way...
double* Ap = malloc(sizeof(double) * degree * A.x);
int i, j;
for (i = 0; i < degree; i++)
for (j = 0; j < A.x; j++)
Ap[i * A.x + j] = pow(A.v[j], degree - i - 1); // mimics MATLAB
vector Bp = makev(degree >= B.x ? degree : B.x);
for (i = 0; i < B.x; i++)
Bp.v[i] = B.v[i];
i = 1; // nrhs, j is info
j = A.x + degree; // lwork
double* work = malloc(sizeof(double) * j);
dgels_("N", &A.x, °ree, &i, Ap, &B.x, Bp.v, °ree, work, &j,
&info);
free(Ap);
free(work);
if (info < 0) {
fprintf(stderr, "LAPACK routine dgels() returned error: %d\n",
info);
exit(EXIT_FAILURE);
}
return(Bp);
}
// given a vector of coefficients and a value for x, evaluate the polynomial
double polyval(vector coefs, double val) {
double sum = 0.;
int i;
for (i = 0; i < coefs.x; i++)
sum += coefs.v[i] * pow(val, coefs.x - i - 1);
return(sum);
}
// some test code
#ifdef DEBUG
int main(void) {
int i, j;
printf("VECTOR example\n");
vector a = makev(10);
for (i = 0; i < a.x; i++)
a.v[i] = i * i;
vector b = copyv(a);
printv(b);
freev(a);
freev(b);
printf("\n");
printf("INTVECTOR example\n");
intvector c = makeiv(10);
for (i = 0; i < c.x; i++)
c.v[i] = i * i;
intvector d = copyiv(c);
printiv(d);
freeiv(c);
freeiv(d);
printf("\n");
printf("more INTVECTOR\n");
intvector c1 = zeroiv(10);
printiv(c1);
freeiv(c1);
intvector d1 = onesiv(10);
printiv(d1);
freeiv(d1);
printf("\n");
printf("MATRIX example\n");
matrix e = makem(20, 3);
for (i = 0; i < e.x; i++)
for (j = 0; j < e.y; j++)
e.m[i][j] = i * i + j;
matrix f = copym(e);
printm(f);
freem(e);
freem(f);
printf("\n");
printf("INTMATRIX example\n");
intmatrix g = makeim(20, 3);
for (i = 0; i < g.x; i++)
for (j = 0; j < g.y; j++)
g.m[i][j] = i * i + j;
intmatrix h = copyim(g);
printim(h);
freeim(g);
freeim(h);
printf("\n");
printf("SIEVE example (input: 23)\n");
printiv(primes(23));
printf("\n");
printf("BILOOK example\n");
vector fives = makev(300);
for (i = 0; i < fives.x; i++)
fives.v[i] = (i + 10) * 5.;
vector twenties = makev(100);
for (i = 0; i < twenties.x; i++)
twenties.v[i] = i * 20.;
printf("searching for values of vector fives in twenties...\n");
printf("fives (sz:%d): %f < x < %f\n", fives.x, fives.v[minv(fives)],
fives.v[maxv(fives)]);
printf("twenties (sz:%d): %f < x < %f\n", twenties.x,
twenties.v[minv(twenties)],
twenties.v[maxv(twenties)]);
int hi = bisectv(twenties, fives.v[14]);
for (i = 15; i < 30; i++) {
hi = bilookv(twenties, fives.v[i], hi - 1);
printf("twenties[%d] %f <= fives[%d] %f < twenties[%d] %f\n", hi - 1,
twenties.v[hi - 1], i, fives.v[i], hi, twenties.v[hi]);
}
freev(fives);
freev(twenties);
printf("\n");
printf("POLY example\n");
vector x = makev(4);
vector y = makev(4);
x.v[0] = 3.0;
x.v[1] = 1.5;
x.v[2] = 4.0;
x.v[3] = 2.;
y.v[0] = 2.5;
y.v[1] = 3.1;
y.v[2] = 2.1;
y.v[3] = 1.0;
printv(polyfit(x, y, 4));
printf("\nOctave: -0.683446 5.276186 -10.846127 -0.092885 13.295935\n");
printf("%f\n", polyval(polyfit(x, y, 4), 3));
printf("Octave: 2.5\n\n");
}
#endif