This repository has been archived by the owner on Feb 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_pl.py
215 lines (174 loc) · 7.93 KB
/
train_pl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
# PL_FAULT_TOLERANT_TRAINING=1
# to enable fault tolerant training
#os.environ['PL_FAULT_TOLERANT_TRAINING'] = '1'
import datetime
import torch
from pathlib import Path
import argparse
import pytorch_lightning as pl
from pytorch_lightning.strategies import DDPStrategy
import torchmetrics
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from tqdm import tqdm
import dataloaders
from dataloaders import ConcatDataset
from pointclouds import PointCloud, SE3
import models
from model_wrapper import ModelWrapper
from pathlib import Path
try:
from mmcv import Config
except ImportError:
from mmengine import Config
def get_rank() -> int:
# SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
# therefore LOCAL_RANK needs to be checked first
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
for key in rank_keys:
rank = os.environ.get(key)
if rank is not None:
return int(rank)
return 0
def get_checkpoint_path(cfg, checkpoint_dir_name: str):
cfg_filename = Path(cfg.filename)
config_name = cfg_filename.stem
parent_name = cfg_filename.parent.name
parent_path = Path(f"model_checkpoints/{parent_name}/{config_name}/")
rank = get_rank()
if rank == 0:
# Since we're rank 0, we can create the directory
return parent_path / checkpoint_dir_name, checkpoint_dir_name
else:
# Since we're not rank 0, we shoulds grab the most recent directory
checkpoint_path = sorted(parent_path.glob("*"))[-1]
return checkpoint_path, checkpoint_path.name
def make_train_dataloader(cfg):
# Handle single loader case
if not isinstance(cfg.loader, list) and not isinstance(cfg.dataset, list):
try:
train_sequence_loader = getattr(dataloaders,
cfg.loader.name)(**cfg.loader.args)
except Exception as e:
print("Error loading loader:", cfg.loader.name)
print("Config:", cfg.loader)
raise e
train_dataset = getattr(dataloaders, cfg.dataset.name)(
sequence_loader=train_sequence_loader, **cfg.dataset.args)
return torch.utils.data.DataLoader(train_dataset,
**cfg.dataloader.args)
# Handle multiple loader case
assert isinstance(cfg.loader, list) and isinstance(cfg.dataset, list), \
f"Either both loader and dataset should be lists, or neither should be. Got loader: {type(cfg.loader)} and dataset: {type(cfg.dataset)}"
assert len(cfg.loader) == len(cfg.dataset), \
f"Length of loader list {len(cfg.loader)} should be equal to length of dataset list {len(cfg.dataset)}"
print("Using multiple loaders of length:", len(cfg.loader))
train_sequence_loader_lst = []
for loader in cfg.loader:
train_sequence_loader_lst.append(
getattr(dataloaders, loader.name)(**loader.args))
print("Using multiple datasets of length:", len(cfg.dataset))
train_dataloader_lst = []
for dataset, train_sequence_loader in zip(cfg.dataset,
train_sequence_loader_lst):
train_dataset = getattr(dataloaders, dataset.name)(
sequence_loader=train_sequence_loader, **dataset.args)
train_dataloader_lst.append(train_dataset)
# Use the concat dataloader to combine the multiple dataloaders
concat_dataset = dataloaders.ConcatDataset(train_dataloader_lst)
return torch.utils.data.DataLoader(concat_dataset, **cfg.dataloader.args)
def make_val_dataloader(cfg):
# Setup val infra
val_sequence_loader = getattr(dataloaders,
cfg.test_loader.name)(**cfg.test_loader.args)
val_dataset = getattr(dataloaders, cfg.test_dataset.name)(
sequence_loader=val_sequence_loader, **cfg.test_dataset.args)
val_dataloader = torch.utils.data.DataLoader(val_dataset,
**cfg.test_dataloader.args)
return val_dataloader
def setup_model(cfg, checkpoint):
if (hasattr(cfg, "is_trainable")
and not cfg.is_trainable) or (checkpoint is None):
model = ModelWrapper(cfg)
else:
assert checkpoint is not None, "Must provide checkpoint for validation"
assert checkpoint.exists(
), f"Checkpoint file {checkpoint} does not exist"
model = ModelWrapper.load_from_checkpoint(checkpoint, cfg=cfg)
if hasattr(cfg, "compile_pytorch2") and cfg.compile_pytorch2:
print("PyTorch 2 compile()ing model!")
model = torch.compile(model, mode="reduce-overhead")
return model
def main():
# Get config file from command line
parser = argparse.ArgumentParser()
parser.add_argument('config', type=Path)
parser.add_argument('--gpus', type=int, default=torch.cuda.device_count())
parser.add_argument('--resume_from_checkpoint', type=Path, default=None)
parser.add_argument(
'--checkpoint_dir_name',
type=str,
default=datetime.datetime.now().strftime("%Y_%m_%d-%I_%M_%S_%p"))
parser.add_argument('--dry_run', action='store_true')
args = parser.parse_args()
assert args.config.exists(), f"Config file {args.config} does not exist"
cfg = Config.fromfile(args.config)
if hasattr(cfg, "is_trainable") and not cfg.is_trainable:
raise ValueError("Config file indicates this model is not trainable.")
if hasattr(cfg, "seed_everything"):
pl.seed_everything(cfg.seed_everything)
checkpoint_path, checkpoint_dir_name = get_checkpoint_path(
cfg, args.checkpoint_dir_name)
checkpoint_path.mkdir(parents=True, exist_ok=True)
# Save config file to checkpoint directory
cfg.dump(str(checkpoint_path / "config.py"))
tbl = TensorBoardLogger("tb_logs",
name=cfg.filename,
version=checkpoint_dir_name)
train_dataloader = make_train_dataloader(cfg)
val_dataloader = make_val_dataloader(cfg)
print("Train dataloader length:", len(train_dataloader))
print("Val dataloader length:", len(val_dataloader))
resume_from_checkpoint = args.resume_from_checkpoint
model = setup_model(cfg, resume_from_checkpoint)
epoch_checkpoint_callback = ModelCheckpoint(
dirpath=checkpoint_path,
filename="checkpoint_{epoch:03d}_{step:010d}_epoch_end",
save_top_k=-1,
every_n_epochs=1,
save_on_train_epoch_end=True)
step_checkpoint_callback = ModelCheckpoint(
dirpath=checkpoint_path,
filename="checkpoint_{epoch:03d}_{step:010d}",
save_top_k=-1,
every_n_train_steps=cfg.save_every,
save_on_train_epoch_end=True)
trainer = pl.Trainer(
devices=args.gpus,
accelerator="gpu",
logger=tbl,
strategy=DDPStrategy(find_unused_parameters=False),
num_sanity_val_steps=2,
log_every_n_steps=2,
resume_from_checkpoint=
resume_from_checkpoint, # it's called ckpt_path in 2.0 (https://lightning.ai/docs/pytorch/stable/common/trainer.html)
val_check_interval=cfg.validate_every,
check_val_every_n_epoch=cfg.check_val_every_n_epoch if hasattr(
cfg, "check_val_every_n_epoch") else 1,
max_epochs=cfg.epochs,
accumulate_grad_batches=cfg.accumulate_grad_batches if hasattr(
cfg, "accumulate_grad_batches") else 1,
gradient_clip_val=cfg.gradient_clip_val if hasattr(
cfg, "gradient_clip_val") else 0.0,
callbacks=[epoch_checkpoint_callback, step_checkpoint_callback])
if args.dry_run:
trainer.validate(model, dataloaders=val_dataloader)
print("Dry run, exiting")
exit(0)
print("Starting training")
print("Length of train dataloader:", len(train_dataloader))
print("Length of val dataloader:", len(val_dataloader))
trainer.fit(model, train_dataloader, val_dataloader)
if __name__ == "__main__":
main()