-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvibrato_data_gen.py
149 lines (119 loc) · 4.43 KB
/
vibrato_data_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import numpy as np
import librosa
import itertools
from scipy import signal
from scipy.signal import butter, lfilter, freqz
''' Sawtooth generator for Stress Test 1 : Vibrato
'''
order = 6
cutoff = 3.667
SR = 44100 # sampling rate
# BW = np.array([130, 70, 160]) # bandwidths for formants
def butter_lowpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y
def get_modulation(f0, delta_f, rate, len_sec):
"""
Args :
f0 : fundamental freq of the pure tone [Hz]
delta_f : amplitude of the frequency oscilliation
rate : [Hz] of the vibrato
len_sec : length of the signal [second]
Return :
y : generated signal
"""
dt = 1. / 44100
time = np.arange(0., len_sec, dt)
frequency = f0 - delta_f * \
np.sin(2 * np.pi * time * rate) # a 1Hz oscillation
print("freq", frequency)
phase_correction = np.add.accumulate(time * \
np.concatenate((np.zeros(1), 2 * np.pi * (frequency[:-1] - frequency[1:]))))
'''
waveform = np.sin(2 * np.pi * time * frequency + phase_correction)
'''
waveform = signal.sawtooth(2 * np.pi * time * frequency + phase_correction)
y = butter_lowpass_filter(waveform, cutoff, frequency[0], order)
y *= 0.5
print(type(y))
return y
def gen_speech(F, bw, sig, fs):
"""
Args :
F: formant frequencies (np array)
sig: original signal to filter
fs: sampling frequency [Hz]
"""
nsecs = len(F)
R = np.exp(-np.pi * bw / fs) # pope radii
theta = 2 * np.pi * F / fs # pole angles
poles = R * np.exp(1j * theta)
A = np.real(np.poly(np.concatenate([poles, poles.conj()], axis=0)))
B = np.zeros(A.shape)
B[0] = 1
r, p, f = signal.residuez(B, A)
As = np.zeros((nsecs, 3), dtype=np.complex)
Bs = np.zeros((nsecs, 3), dtype=np.complex)
for idx, i in enumerate(range(1, 2 * nsecs + 1, 2)):
j = i - 1
Bs[idx] = [r[j] + r[j + 1], -(r[j] * p[j + 1] + r[j + 1] * p[j]), 0]
As[idx] = [1, -(p[j] + p[j + 1]), p[j] * p[j + 1]]
sos = np.concatenate([As, Bs], axis=1)
iperr = np.abs(np.imag(sos)) / (np.abs(sos) + 1e-10)
sos = np.real(sos)
Bh, Ah = signal.sos2tf(sos)
nfft = 512
H = np.zeros((nsecs + 1, nfft))
for i in range(nsecs):
Hiw, w = signal.freqz(Bs[i, :], As[i, :])
H[i + 1, :] = np.conj(Hiw[:])
H[0, :] = np.sum(H[1:, :], axis=0)
speech = signal.lfilter([1], A, sig)
speech = speech - speech.mean()
speech = speech / np.max(np.abs(speech))
return speech
if __name__ == "__main__":
f0 = 220 # fundamental freq of the signal
len_sec = 4 # length of the signal [second]
try:
os.mkdir('sawtooth_200')
except:
pass
try:
os.mkdir('sawtooth_200/songs')
except:
pass
# https://soundbridge.io/formants-vowel-sounds
Fs = np.array([[800, 1150, 2800],
[400, 1600, 2700],
[350, 1700, 2700],
[450, 800, 2830],
[325, 700, 2530]])
BWs = np.array([[80, 90, 120],
[60, 80, 120],
[50, 100, 120],
[70, 80, 100],
[50, 60, 170]])
speech_names = ['a', 'e', 'i', 'o', 'u']
semitones = [0.01, 0.1, 0.3, 0.6, 1, 2, 4, 8] # amount of vibrato [semitones]
delta_fs = [np.round(f0 * 2 ** (smt / 12.) - f0) for smt in semitones] # amount of vibrato [Hz]
print(delta_fs)
rates = [0.5, 1, 2, 4, 6, 8, 10] # how fast is the vibrato [num_vibrato per second]
for delta_f, rate in itertools.product(delta_fs, rates):
print(delta_f, rate)
y = get_modulation(f0, delta_f, rate, len_sec)
filename = 'sawtooth_200/songs/' + 'modulated_%d_%d_%d.wav' % (
int(f0), int(delta_f), int(rate))
librosa.output.write_wav(filename, y=y, sr=SR)
for F, BW, speech_name in zip(Fs, BWs, speech_names):
y_modi = gen_speech(F, BW, y, SR)
filename = 'sawtooth_200/songs/' + 'modulated_%s_%d_%d_%d.wav' % (
speech_name, int(f0), int(delta_f), int(rate))
librosa.output.write_wav(filename, y=y_modi, sr=SR)