-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpymc_extracted.f
109 lines (95 loc) · 2.99 KB
/
pymc_extracted.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
C written by amazing people from PyMC team: https://github.com/pymc-devs/pymc
C Chris Fonnesbeck, Anand Patil, David Huard, John Salvatier
C copied and compiled here, because PyMC is no longer maintained, and PyMC3
C lacks mvhyperg
DOUBLE PRECISION FUNCTION gammln(xx)
C Returns the value ln[gamma(xx)] for xx > 0.
DOUBLE PRECISION xx
INTEGER j
DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)
C Internal arithmetic will be done in double precision,
C a nicety that you can omit if five-figure accuracy is good enough.
SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,
+24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2,
+-.5395239384953d-5,2.5066282746310005d0/
x=xx
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*dlog(tmp)-tmp
ser=1.000000000190015d0
do j=1,6
y=y+1.d0
ser=ser+cof(j)/y
enddo
gammln=tmp+dlog(stp*ser/x)
return
END
DOUBLE PRECISION FUNCTION factln(n)
C USES gammln Returns ln(n!).
INTEGER n
DOUBLE PRECISION a(100),gammln, pass_val
DOUBLE PRECISION infinity
PARAMETER (infinity = 1.7976931348623157d308)
SAVE a
C Initialize the table to negative values.
DATA a/100*-1./
pass_val = n + 1
if (n.lt.0) then
c write (*,*) 'negative factorial in factln'
factln=-infinity
return
endif
C In range of the table.
if (n.le.99) then
C If not already in the table, put it in.
if (a(n+1).lt.0.) a(n+1)=gammln(pass_val)
factln=a(n+1)
else
C Out of range of the table.
factln=gammln(pass_val)
endif
return
END
SUBROUTINE mvhyperg(x,color,k,like)
c Multivariate hypergeometric log-likelihood function
c Using the analogy of an urn filled with balls of different colors,
c the mv hypergeometric distribution describes the probability of
c drawing x(i) balls of a given color.
c
c x : (array) Number of draws for each color.
c color : (array) Number of balls of each color.
c Total number of draws = sum(x)
c Total number of balls in the urn = sum(color)
cf2py integer dimension(k),intent(in) :: x,color
cf2py integer intent(hide),depend(x) :: k=len(x)
cf2py double precision intent(out) :: like
cf2py threadsafe
INTEGER x(k),color(k)
INTEGER d,total,i,k
DOUBLE PRECISION like
DOUBLE PRECISION factln
DOUBLE PRECISION infinity
PARAMETER (infinity = 1.7976931348623157d308)
total = 0
d = 0
like = 0.0
do i=1,k
c Combinations of x balls of color i
like = like + factln(color(i))-factln(x(i))
+-factln(color(i)-x(i))
if ((color(i) .LT. 0.0) .OR. (x(i) .LT. 0.0)) then
like = -infinity
RETURN
endif
d = d + x(i)
total = total + color(i)
enddo
if (total .LE. 0.0) then
like = -infinity
RETURN
endif
c Combinations of d draws from total
like = like - (factln(total)-factln(d)-factln(total-d))
return
END