-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonics.pyx
480 lines (421 loc) · 18.1 KB
/
sonics.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import logging
import os
from itertools import repeat, chain
import cython
import numpy as np
import pandas as pd
from scipy.stats import mannwhitneyu
from pymc_extracted import mvhyperg as mhl
cimport numpy as np
DTYPE = np.int
ctypedef np.int_t DTYPE_t
__author__ = "Katarzyna Kedzierska"
__email__ = "kzk5f@virginia.edu"
# FUNCTIONS RUN ONLY ONCE/TWICE PER GENOTYPE
def get_alleles(genot_input):
"""get a dictionary with alleles as keys and number_of_reads as values
from the input readout ('allele1|#;allele2|#').
"""
max_allele = 500
alleles = np.zeros(max_allele, dtype=DTYPE)
for f in genot_input.split(';'):
if f != "":
pair = [int(x) for x in f.split("|")]
if pair[0] > 0:
alleles[pair[0]] = pair[1]
#alleles[alleles < max(alleles) * 0.01] = 0
n_alleles = len(alleles.nonzero()[0])
#logging.info(alleles)
return alleles, max_allele, n_alleles
def generate_params(r, pref):
"""generates random parameters from given ranges"""
down, up, cap, eff = r
small_number = 1e-16 # to make the range exclusive, instead of inclusive
d = np.random.uniform(down[0] + small_number, down[1])
if pref:
u = np.random.uniform(up[0] + small_number, up[1])
else:
u = np.random.uniform(up[0] + small_number, d)
c = np.random.uniform(cap[0] + small_number, cap[1])
p = np.random.uniform(eff[0] + small_number, eff[1]) # pcr-efficiency
return {'down': d, 'up': u, 'capture': c, 'efficiency': p}
def monte_carlo(max_n_reps, constants, ranges, options):
"""Runs Monte Carlo simulation of the PCR amplification until
p_value threshold for the Mann Whitney test is reached or
the number of repetition reaches the maximum.
Arguments:
max_n_reps -- upper limit for number of repetitions run
constants -- constants throughout the simulations
ranges -- ranges for generation PCR simulation specific parameters
options -- parameters shared throughout all simulations
Scheme:
1) Run the first n repetitions.
2) Calculate the highest p value for all the comparisons between
set with the highest log likelihood median and others.
3) Check if the highest p value with Bonferroni corrections is
lower than the threshold. If true, stop. If false, go to step 1
with new n now equal to 4*n if the it's the even round of
repetitions or 2*n it's the odd. That way the sop will be made
every 100, 500, 1000, 5000 etc. repetitions.
"""
padjust = constants["padjust"]
lnL_threshold = constants["lnL_threshold"]
block = options['block']
name = options['name']
successful = False
"""successful - parameter that helps distinguish between
the simulations needing more repetitions and the ones
that are beyond the abilities of SONiCS"""
results = list()
run_reps = 0
reps_round = 1
if options['monte_carlo']:
reps = max_n_reps
else:
reps = 100 if max_n_reps > 100 else max_n_reps
while run_reps < max_n_reps:
results.extend(list(map(
one_repeat,
repeat(constants, reps),
repeat(ranges),
repeat(reps)
)))
run_reps += reps
#group by the initial genotype
results_colnames = [
'ident',
'r_squared',
'lnL',
'genotype',
'noise_coef',
'down',
'up',
'capture',
'efficiency'
]
results_pd = pd.DataFrame.from_records(results,
columns=results_colnames)
if options['monte_carlo']:
if options['save_report']:
report_path = os.path.join(options['out_path'],
"{}_{}.txt".format(block, name))
results_pd.to_csv(report_path, index=False, sep="\t")
best_guess = results_pd.sort_values(by="lnL",
ascending=False).head(n=1)
genotype = best_guess["genotype"].item()
genotype_pd = results_pd.groupby("genotype", as_index=False).get_group(genotype)
quantiles = genotype_pd.quantile(0.75)
ret_list = [
genotype, #genotype n_reps/n_reps
best_guess["ident"].item(), #identity
quantiles["ident"].item(), #identity quantile
best_guess["r_squared"].item(), #r^2
quantiles["r_squared"].item(), #r^2 quantile
best_guess["lnL"].item(), #lnLlihood
quantiles["lnL"].item(), #lnL quantile
run_reps #repetitions
]
ret = "\t".join([str(element) for element in ret_list])
return ret
results_pd = results_pd.groupby("genotype", as_index=False)
# print(results_pd.head(n=2))
#check what's the minimum of simulations per genotype
min_sim = results_pd['lnL'].apply(lambda x: x[x > -999999].count()).sort_values('lnL')['lnL'].iloc[0]
#check for minimum number of simulations
if min_sim >= options['min_sim']:
#get the medians for log likelihoods in groups
results_maxs = results_pd.max().sort_values(by="lnL",
ascending=False)
#get top two alleles
allele_highest_lnL = results_maxs['genotype'].iloc[0]
allele_second_lnL = results_maxs['genotype'].iloc[1]
best_allele = results_pd.get_group(allele_highest_lnL)
second_best = results_pd.get_group(allele_second_lnL)
# compare best likelihoods
best_lnL = results_maxs['lnL'].iloc[0]
second_lnL = results_maxs['lnL'].iloc[1]
best_lnL_ratio = best_lnL - second_lnL
#compare median likelihoods
best_lnL_percentile = best_allele.quantile(0.75)['lnL']
second_lnL_percentile = second_best.quantile(0.75)['lnL']
percentile_lnL_ratio = best_lnL_percentile - second_lnL_percentile
#get the set of other alleles
other_alleles = set(results_maxs.genotype) - set([allele_highest_lnL])
high_pval = 0
n_tests = 0
for b in other_alleles:
try:
stat, pval = mannwhitneyu(
best_allele.iloc[:,2],
results_pd.get_group(b).iloc[:,2],
alternative="greater"
)
high_pval = max(pval, high_pval)
except ValueError:
high_pval = 1
n_tests += 1
#Bonferroni correction in its essence
high_pval *= n_tests
#check if p_value threshold is satisfied
if (
high_pval < padjust and
percentile_lnL_ratio > lnL_threshold and
best_lnL_ratio > lnL_threshold
):
successful = True
logging.debug("Will break! P-value: {}".format(high_pval))
break
#calculate additional repetitions
reps = 4 * run_reps if reps_round % 2 == 1 else run_reps
# make sure that the number of reps does not exceed the maximum
reps = max_n_reps - run_reps if reps + run_reps > max_n_reps else reps
reps_round += 1
if options['save_report']:
results_pd_csv = pd.DataFrame.from_records(results,
columns=results_colnames)
report_path = os.path.join(options['out_path'],
"{}_{}.txt".format(block, name))
results_pd_csv.to_csv(report_path, index=False, sep="\t")
if min_sim < 25:
filt = "no_success"
#this can happen if there is noise from very distant alleles
ret = "\t".join([
"./.", #genotype
".", #identity
".", #r^2
".", #lnL
filt, #FILTER
".", #Mann-Whitney U test, p_val
".", #best lnL
".", #median lnL
str(run_reps), #reps
"."
])
return ret
high_pval = high_pval if high_pval < 1 else 1
best_guess = best_allele.sort_values("lnL",
ascending=False).head(n=1)
#check for additional percentiles to be calculated
add_data = "."
if options['add_ratios'] != "":
percentiles = options['add_ratios'].split(";")
for perc in percentiles:
p = float(perc)
best_lnL_percentile = best_allele.quantile(p)['lnL']
second_lnL_percentile = second_best.quantile(p)['lnL']
percentile_lnL_ratio = best_lnL_percentile - second_lnL_percentile
if add_data == ".":
add_data = "{}|{}".format(perc, percentile_lnL_ratio)
else:
add_data += ";{}|{}".format(perc, percentile_lnL_ratio)
if successful:
filt = "PASS"
else:
conditions = [
"MWU_test" if high_pval > padjust else "",
"best_ratio" if best_lnL_ratio < constants["lnL_threshold"] else "",
"percentile_ratio" if percentile_lnL_ratio < constants["lnL_threshold"] else ""
]
filt = ",".join([cond for cond in conditions if cond != ""])
ret_list = [
best_guess["genotype"].item(), #genotype n_reps/n_reps
best_guess["ident"].item(), #identity
best_guess["r_squared"].item(), #r^2
best_guess["lnL"].item(), #median lnLlihood
filt, #FILTER
high_pval, #highest p_value
best_lnL_ratio, #best lnLlihood ratio
percentile_lnL_ratio, #median lnLlihood ratio
run_reps, #repetitions
add_data #additional data
]
ret = "\t".join([str(element) for element in ret_list])
return ret
# FUNCTIONS RUN EVERY SIMULATION
def rsq(np.ndarray true_values, np.ndarray pred_values):
"""Calculates the coefficient of determination between the truth (x) and
prediction (y).
"""
fr = min(
true_values.nonzero()[0][0],
pred_values.nonzero()[0][0]
)
to = 1 + max(
true_values.nonzero()[0][-1],
pred_values.nonzero()[0][-1]
)
true_values = true_values[fr:to]
pred_values = pred_values[fr:to]
true_mean = true_values.mean()
ss_tot = sum([(i - true_mean) ** 2 for i in true_values])
ss_tot = 1e-16 if ss_tot == 0 else ss_tot
ss_res = sum([i ** 2 for i in true_values - pred_values])
return 1 - ss_res / ss_tot
def one_repeat(dict constants, tuple ranges,
int how_many_reps=100):
"""Calls PCR simulation function, based on PCR products generates
genotype and calculates model statistics"""
cdef int total_molecule, first, second, genotype_total, max_allele, floor
cdef dict parameters
cdef str initial
cdef float identified, r_squared, prob_a, noise_coef, noise_threshold
cdef np.ndarray[DTYPE_t, ndim=1] alleles, alleles_nonzero, noise
genotype_total = constants['genotype_total']
noise_coef = constants['noise_coef']
noise_threshold = constants['noise_threshold']
max_allele = constants['max_allele']
PCR_products = np.zeros(constants['max_allele'], dtype=DTYPE)
parameters = generate_params(ranges, constants['up_preference'])
alleles = constants['alleles']
total_molecules = 0
if constants['floor'] == -1:
floor = 1
else:
floor = constants['alleles'].nonzero()[0][0] - constants['floor']
floor = floor if floor > 1 else 1
if len(alleles.nonzero()[0]) == 1:
raise Exception(("Less then two alleles as starting conditions!"
" Aborting."))
if constants['random']:
first, second = tuple(np.random.choice(alleles.nonzero()[0], 2))
else:
first = alleles.argmax()
second = np.random.choice(alleles.nonzero()[0])
PCR_products[first] += constants['start_copies'] / 2
PCR_products[second] += constants['start_copies'] / 2
if first < second:
initial = "{}/{}".format(first, second)
else:
initial = "{}/{}".format(second, first)
if noise_coef > 0:
noise = np.copy(alleles)
noise[noise > 0] = noise_coef * sum(PCR_products)
PCR_products += noise
PCR_products = simulate(PCR_products, constants, parameters, floor)
PCR_total_molecules = np.sum(PCR_products)
#genotype generation
mid = []
for allele in range(max_allele):
"""The binomial distribution is frequently used to model the number of
successes in a sample of size n drawn with replacement from
a population of size N. If the sampling is carried out without
replacement, the draws are not independent and so the resulting
distribution is a hypergeometric distribution, not a binomial one.
However, for N much larger than n, the binomial distribution
remains a good approximation, and is widely used. [Wikipedia]"""
n_times = np.random.binomial(genotype_total,
PCR_products[allele] / PCR_total_molecules)
allele_molecules = list(repeat(allele, n_times))
mid.extend(allele_molecules)
if sum(alleles > PCR_products) != 0:
lnL_a = -999999
else:
lnL_a = mhl(alleles, PCR_products)
"""Simulate readout from PCR pool and compare it to the readout
from the input."""
try:
readout = np.bincount(np.random.choice(mid, genotype_total))
readout.resize(max_allele)
except ValueError:
#
readout = np.zeros(max_allele, dtype=DTYPE)
# model statistics
alleles_nonzero = alleles.nonzero()[0]
if readout.nonzero()[0].size == 0:
#this happens if the input genotype is very small
#basically the fragments did not get sequenced
identity = 0
r_squared = -999999
else:
identity = ((sum([min(alleles[i], readout[i]) for i in alleles_nonzero]))
/ genotype_total)
r_squared = rsq(alleles, readout)
report = [identity, r_squared, lnL_a, initial, noise_coef]
prmtrs = [
parameters['down'],
parameters['up'],
parameters['capture'],
parameters['efficiency']
]
report.extend(prmtrs)
return report
def simulate(np.ndarray products, dict constants, dict parameters, int floor):
"""Simulates PCR run, includes capture step if specified by PCR parameters
"""
cdef int ct, ct_up, al, n, namp, nslip, nup, ndown, ncorrect, cc
cdef float efficiency, capture, floor_cap, cap_set, hit
cdef double up, down, prob_up, prob_down, prob_slip, pu_norm
cdef long seed_n
cdef np.ndarray[DTYPE_t, ndim=1] nzp, cs
cc = constants['capture_cycle']
up = parameters['up']
down = parameters['down']
capture = parameters['capture']
efficiency = parameters['efficiency']
for cycle in range(1, constants['n_cycles']+1):
# capture step
if cycle == cc and len(products) > 1:
nzp = products.nonzero()[0]
cap_set = capture / (max(products) - min(nzp))
floor_cap = 1 - (cap_set * len(nzp) / 2)
n = 1
for al in nzp:
ct = products[al]
hit = (floor_cap + cap_set * n) * ct
ct_up = np.random.poisson(hit)
ct_up = ct_up if ct_up < ct else ct
products[al] = ct_up
n += 1
nzp = products.nonzero()[0]
# cycle simulation for each allele
for al in nzp:
if al >= floor:
seed_n = np.random.randint(1, 4294967295)
ct = products[al]
prob_up = 1 - (1 - up) ** al
prob_down = 1 - (1 - down) ** al
prob_slip = 1 - (1 - prob_down) * (1 - prob_up)
try:
prob_up_norm = prob_up / (prob_up + prob_down)
except ZeroDivisionError:
logging.warning(("Encountered precision error!\n"
"allele: %s\n"
"parameters: %s\n"
"constants: %s\n"
"prob_up: %.s\n"
"prob_down: %.s\n"
"prob_down + prob_up: %s\n"
"up: %s\n"
"down: %s\n"
"seed: %s\n"), al,
parameters, constants, prob_up, prob_down,
prob_up + prob_down, up, down, seed_n)
np.random.seed(seed_n)
"""number of molecules to which the polymerase bound,
i.e. number of successes where number of trials is ct
and probability is PCR efficiency"""
mol_amp = np.random.binomial(ct, efficiency)
"""number of slips, where number of trials is the number
of times the polymerase bound the molecule and
probability is the probability of slippage"""
mol_slip = np.random.binomial(mol_amp, prob_slip)
"""number of up stutters where number of trails is
number of slips and the probability is the normalized
probability of stutter up"""
mol_up = np.random.binomial(mol_slip, prob_up_norm)
mol_down = mol_slip - mol_up
#number of molecules with correct number of repetitions
mol_allele = mol_amp - mol_slip
products[al] += mol_allele
if mol_down > 0:
"""polymerase slipped producing mol_down molecules
with one less repetition of the motif"""
products[al - 1] += mol_down
if mol_down > 0:
"""polymerase slipped producing mol_dup molecules
with one more repetition of the motif"""
products[al + 1] += mol_up
else:
mol_amp = np.random.binomial(ct, efficiency)
products[al] += mol_amp
return products