-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBaseline.py
230 lines (170 loc) · 8.28 KB
/
Baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#%%
import argparse, sys, os, numpy as np, torch, random, pandas as pd
from sklearn.model_selection import StratifiedKFold
from sklearn.svm import SVC, SVR
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, f1_score, mean_squared_error
from sklearn.feature_extraction.text import TfidfVectorizer
from utils import params
from models import SeqModel, train_model_dev, predict
from pathlib import Path
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
def load_data(file_path):
if os.path.isfile(file_path):
train = pd.read_csv(file_path).fillna(0)
else:
print(f'File {file_path} not found')
exit(0)
data = {i: np.array(train[i].to_list()) for i in train.columns}
if 'mean_prejudice' in data:
data['mean_prejudice'] = data['mean_prejudice'].reshape(-1, 1)
return data
def evaluate(gold_file, predictions_path):
gold = pd.read_csv(gold_file).fillna(0)
gv_ml = gold['prejudice_woman,prejudice_lgbtiq,prejudice_inmigrant_race,gordofobia'.split(',')].to_numpy()
gv_humor = gold['humor'].to_numpy()
gv_prej = gold['mean_prejudice'].to_numpy()
p_ml, p_humor, p_prejudice = None, None, None
if os.path.isfile(predictions_path + '_ml.csv'):
p_ml = pd.read_csv(predictions_path + '_ml.csv').fillna(0)
if os.path.isfile(predictions_path + '_humor.csv'):
p_humor = pd.read_csv(predictions_path + '_humor.csv').fillna(0)
if os.path.isfile(predictions_path + '_mean_prejudice.csv'):
p_prejudice = pd.read_csv(predictions_path + '_mean_prejudice.csv').fillna(0)
pv_ml = []
pv_humor = []
pv_prej = []
for index in gold['index'].to_list():
if p_ml is not None:
pv_ml += [p_ml[p_ml['index'] == index]['prejudice_woman,prejudice_lgbtiq,prejudice_inmigrant_race,gordofobia'.split(',')].to_numpy()[0]]
if p_humor is not None:
pv_humor += [p_humor[p_humor['index'] == index]['humor'].to_numpy()[0]]
if p_prejudice is not None:
pv_prej += [p_prejudice[p_prejudice['index'] == index]['mean_prejudice'].to_numpy()[0]]
if p_humor is not None:
print('subtask 1 (Humor)', f1_score(gv_humor, pv_humor))
if p_ml is not None:
print('subtask 2 (Target)', f1_score(gv_ml, pv_ml, average='macro'))
if p_prejudice is not None:
print('subtask 3 (Prejudice degree)', mean_squared_error(gv_prej, pv_prej, squared=False))
return
def merge_preds(model, output = 'output'):
predictions = {}
pred_to_save = {'index':[]}
for i in 'prejudice_woman,prejudice_lgbtiq,prejudice_inmigrant_race,gordofobia'.split(','):
pred_to_save[i] = []
if not os.path.isfile(f'output/{model}_{i}.csv'):
print(f'Predictions for {i} not found')
return
df = pd.read_csv(f'output/{model}_{i}.csv')
for _,row in df.iterrows():
if row['index'] not in predictions:
predictions[row['index']] = {'index':row['index']}
predictions[row['index']][i] = row[i]
for i in predictions:
for j in pred_to_save:
pred_to_save[j] += [predictions[i][j]]
pred_to_save = pd.DataFrame(pred_to_save)
pred_to_save.to_csv(f'{output}/{model}_ml.csv', index=False)
def check_params(args=None):
parser = argparse.ArgumentParser(description='Language Model Encoder')
parser.add_argument('-model', metavar='model', default = params.MODEL,
help='Model to be run')
parser.add_argument('-task', metavar='task', default = None,
help='Model to be run', choices='humor,prejudice_woman,prejudice_lgbtiq,prejudice_inmigrant_race,gordofobia,mean_prejudice'.split(','))
parser.add_argument('-mode', metavar='mode', default = params.MODE,
help='Use diferent paradigm learning or evaluate predictions', choices=['evaluate', 'transformer', 'classic'])
parser.add_argument('-phase', metavar='phase', default = params.PHASE,
help='Train evaluate or encode with model', choices=['train', 'predict'])
parser.add_argument('-output', metavar='output', default = params.OUTPUT,
help='Output path for encodings and predictions')
parser.add_argument('-lr', metavar='lrate', default = params.LR , type=float,
help='Learning rate for neural models optimization')
parser.add_argument('-decay', metavar='decay', default = params.DECAY, type=float,
help='learning rate decay for neural models optimization')
parser.add_argument('-interm_layer', metavar='int_layer', default = params.IL, type=int,
help='amount of intermediate layer neurons')
parser.add_argument('-epoches', metavar='epoches', default=params.EPOCHES, type=int,
help='Trainning epoches')
parser.add_argument('-bs', metavar='batch_size', default=params.BS, type=int,
help='Batch Size')
parser.add_argument('-wp', metavar='weigths_path', default=params.OUTPUT,
help='Saved weights Path')
parser.add_argument('-tf', metavar='trainf', default=None,
help='training data file')
parser.add_argument('-vf', metavar='valf', default=None,
help='vaidation data file')
parser.add_argument('-gf', metavar='goldenf', default=None,
help='Labeled file for evaluation')
return parser.parse_args(args)
if __name__ == '__main__':
parameters = check_params(sys.argv[1:])
model = parameters.model
phase = parameters.phase
mode = parameters.mode
output = parameters.output
task = parameters.task
learning_rate, decay = parameters.lr, parameters.decay
interm_layer_size = parameters.interm_layer
epoches = parameters.epoches
batch_size = parameters.bs
gf = parameters.gf
train_file = parameters.tf
dev_file = parameters.vf
weights_path = parameters.wp
if mode == 'transformer':
if task is None:
print('Please specify a task')
exit(0)
if phase == 'train':
Path(output).mkdir(parents=True, exist_ok=True)
if os.path.exists(output) == False:
os.system(f'mkdir {output}')
train = load_data(train_file)
dev = load_data(dev_file)
history = None
history = train_model_dev(model_name=model, data_train=train, data_dev=dev, epoches=epoches, batch_size=batch_size,
interm_layer_size = interm_layer_size, lr = learning_rate, decay=decay, output=output, task=task)
if phase == 'predict':
modelB = SeqModel(interm_layer_size, model, task)
modelB.load(os.path.join(weights_path, f"{model.split('/')[-1]}_{task}"))
data_dev = load_data(dev_file)
predict(modelB, model.split('/')[-1], task, data_dev=data_dev)
if mode == 'classic':
if task is None:
print('Please specify a task')
exit(0)
Path(output).mkdir(parents=True, exist_ok=True)
if os.path.exists(output) == False:
os.system(f'mkdir {output}')
train = load_data(train_file)
test = load_data(dev_file) # loaded test directly since no parameters are tuned
vectorizer = TfidfVectorizer(min_df = 0,
max_df = 0.8,
sublinear_tf = True,
analyzer = 'char',
ngram_range=(3, 3),
use_idf = True)
train_vectors = vectorizer.fit_transform(train['tweet'])
test_vectors = vectorizer.transform(test['tweet'])
if task != 'mean_prejudice':
modelB = SVC() if model == 'SVM' else RandomForestClassifier()
else:
modelB = SVR()
modelB.fit(train_vectors, train[task])
pred = modelB.predict(test_vectors)
if task != 'mean_prejudice':
metrics = classification_report(test[task], pred, target_names=[f'No {task}', task], digits=4, zero_division=1)
print(metrics)
else:
metrics = mean_squared_error(test[task], pred, squared=False)
print(metrics)
out = {'index': test['index'], task: pred}
df = pd.DataFrame(out)
df.to_csv(os.path.join(output, f"{model}_{task}.csv"), index=False)
if mode == 'evaluate':
merge_preds(model.split('/')[-1])
evaluate(gf, f"{output}/{model.split('/')[-1]}")
# %%