Skip to content

Latest commit

 

History

History
314 lines (264 loc) · 17.3 KB

README.md

File metadata and controls

314 lines (264 loc) · 17.3 KB

codecov Github CI

gnina (pronounced NEE-na) is a molecular docking program with integrated support for scoring and optimizing ligands using convolutional neural networks. It is a fork of smina, which is a fork of AutoDock Vina.

Help

Please subscribe to our slack team. An example colab notebook showing how to use gnina is available here. We also hosted a workshp on using gnina (video, slides).

Citation

If you find gnina useful, please cite our paper(s):

GNINA 1.0: Molecular docking with deep learning (Primary application citation)
A McNutt, P Francoeur, R Aggarwal, T Masuda, R Meli, M Ragoza, J Sunseri, DR Koes. J. Cheminformatics, 2021
link PubMed ChemRxiv

Protein–Ligand Scoring with Convolutional Neural Networks (Primary methods citation)
M Ragoza, J Hochuli, E Idrobo, J Sunseri, DR Koes. J. Chem. Inf. Model, 2017
link PubMed arXiv

Ligand pose optimization with atomic grid-based convolutional neural networks
M Ragoza, L Turner, DR Koes. Machine Learning for Molecules and Materials NIPS 2017 Workshop, 2017
arXiv

Visualizing convolutional neural network protein-ligand scoring
J Hochuli, A Helbling, T Skaist, M Ragoza, DR Koes. Journal of Molecular Graphics and Modelling, 2018
link PubMed arXiv

Convolutional neural network scoring and minimization in the D3R 2017 community challenge
J Sunseri, JE King, PG Francoeur, DR Koes. Journal of computer-aided molecular design, 2018
link PubMed

Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design
PG Francoeur, T Masuda, J Sunseri, A Jia, RB Iovanisci, I Snyder, DR Koes. J. Chem. Inf. Model, 2020
link PubMed Chemrxiv

Virtual Screening with Gnina 1.0 J Sunseri, DR Koes D. Molecules, 2021 link Preprints

Docker

A pre-built docker image is available here and Dockerfiles are here.

Installation

We strongly recommend that you build gnina from source to ensure you are using libraries that are optimized for your system. However, a compatibility focused binary is available as part of the release for evaluation purposes.

Ubuntu 20.04

apt-get install build-essential cmake git wget libboost-all-dev libeigen3-dev libgoogle-glog-dev libprotobuf-dev protobuf-compiler libhdf5-dev libatlas-base-dev python3-dev librdkit-dev python3-numpy python3-pip python3-pytest

Follow NVIDIA's instructions to install the latest version of CUDA (>= 10.0 is required). Make sure nvcc is in your PATH.

Optionally install cuDNN.

Install OpenBabel3

git clone https://github.com/openbabel/openbabel.git
cd openbabel
git checkout openbabel-3-1-1 
mkdir build
cd build
cmake -DWITH_MAEPARSER=OFF -DWITH_COORDGEN=OFF -DPYTHON_BINDINGS=ON -DRUN_SWIG=ON ..
make
make install

Install gnina

git clone https://github.com/gnina/gnina.git
cd gnina
mkdir build
cd build
cmake ..
make
make install

If you are building for systems with different GPUs (e.g. in a cluster environment), configure with -DCUDA_ARCH_NAME=All.
Note that the cmake build will automatically fetch and install libmolgrid if it is not already installed.

The scripts provided in gnina/scripts have additional python dependencies that must be installed.

Usage

To dock ligand lig.sdf to a binding site on rec.pdb defined by another ligand orig.sdf:

gnina -r rec.pdb -l lig.sdf --autobox_ligand orig.sdf -o docked.sdf.gz

To perform docking with flexible sidechain residues within 3.5 Angstroms of orig.sdf (generally not recommend unless prior knowledge indicates pocket is highly flexible):

gnina -r rec.pdb -l lig.sdf --autobox_ligand orig.sdf --flexdist_ligand orig.sdf --flexdist 3.5 -o flex_docked.sdf.gz

To perform whole protein docking:

gnina -r rec.pdb -l lig.sdf --autobox_ligand rec.pdb -o whole_docked.sdf.gz --exhaustiveness 64

To utilize the default ensemble CNN in the energy minimization during the refinement step of docking (10 times slower than the default rescore option):

gnina -r rec.pdb -l lig.sdf --autobox_ligand orig.sdf --cnn_scoring refinement -o cnn_refined.sdf.gz

To utilize the default ensemble CNN for every step of docking (1000 times slower than the default rescore option):

gnina -r rec.pdb -l lig.sdf --autobox_ligand orig.sdf --cnn_scoring all -o cnn_all.sdf.gz

To utilize all empirical scoring using the Vinardo scoring function:

gnina -r rec.pdb -l lig.sdf --autobox_ligand orig.sdf --scoring vinardo --cnn_scoring none -o vinardo_docked.sdf.gz

To utilize a different CNN during docking (see help for possible options):


gnina -r rec.pdb -l lig.sdf --autobox_ligand orig.sdf --cnn dense -o dense_docked.sdf.gz

To minimize and score ligands ligs.sdf already positioned in a binding site:

gnina -r rec.pdb -l ligs.sdf --minimize -o minimized.sdf.gz

All options:

Input:
  -r [ --receptor ] arg            rigid part of the receptor
  --flex arg                       flexible side chains, if any (PDBQT)
  -l [ --ligand ] arg              ligand(s)
  --flexres arg                    flexible side chains specified by comma 
                                   separated list of chain:resid
  --flexdist_ligand arg            Ligand to use for flexdist
  --flexdist arg                   set all side chains within specified 
                                   distance to flexdist_ligand to flexible
  --flex_limit arg                 Hard limit for the number of flexible 
                                   residues
  --flex_max arg                   Retain at at most the closest flex_max 
                                   flexible residues

Search space (required):
  --center_x arg                   X coordinate of the center
  --center_y arg                   Y coordinate of the center
  --center_z arg                   Z coordinate of the center
  --size_x arg                     size in the X dimension (Angstroms)
  --size_y arg                     size in the Y dimension (Angstroms)
  --size_z arg                     size in the Z dimension (Angstroms)
  --autobox_ligand arg             Ligand to use for autobox
  --autobox_add arg                Amount of buffer space to add to 
                                   auto-generated box (default +4 on all six 
                                   sides)
  --autobox_extend arg (=1)        Expand the autobox if needed to ensure the 
                                   input conformation of the ligand being 
                                   docked can freely rotate within the box.
  --no_lig                         no ligand; for sampling/minimizing flexible 
                                   residues

Scoring and minimization options:
  --scoring arg                    specify alternative built-in scoring 
                                   function
  --custom_scoring arg             custom scoring function file
  --custom_atoms arg               custom atom type parameters file
  --score_only                     score provided ligand pose
  --local_only                     local search only using autobox (you 
                                   probably want to use --minimize)
  --minimize                       energy minimization
  --randomize_only                 generate random poses, attempting to avoid 
                                   clashes
  --num_mc_steps arg               number of monte carlo steps to take in each 
                                   chain
  --num_mc_saved arg               number of top poses saved in each monte 
                                   carlo chain
  --minimize_iters arg (=0)        number iterations of steepest descent; 
                                   default scales with rotors and usually isn't
                                   sufficient for convergence
  --accurate_line                  use accurate line search
  --simple_ascent                  use simple gradient ascent
  --minimize_early_term            Stop minimization before convergence 
                                   conditions are fully met.
  --minimize_single_full           During docking perform a single full 
                                   minimization instead of a truncated 
                                   pre-evaluate followed by a full.
  --approximation arg              approximation (linear, spline, or exact) to 
                                   use
  --factor arg                     approximation factor: higher results in a 
                                   finer-grained approximation
  --force_cap arg                  max allowed force; lower values more gently 
                                   minimize clashing structures
  --user_grid arg                  Autodock map file for user grid data based 
                                   calculations
  --user_grid_lambda arg (=-1)     Scales user_grid and functional scoring
  --print_terms                    Print all available terms with default 
                                   parameterizations
  --print_atom_types               Print all available atom types

Convolutional neural net (CNN) scoring:
  --cnn_scoring arg (=1)           Amount of CNN scoring: none, rescore 
                                   (default), refinement, all
  --cnn arg                        built-in model to use, specify 
                                   PREFIX_ensemble to evaluate an ensemble of 
                                   models starting with PREFIX: 
                                   crossdock_default2018 crossdock_default2018_
                                   1 crossdock_default2018_2 
                                   crossdock_default2018_3 
                                   crossdock_default2018_4 default2017 dense 
                                   dense_1 dense_2 dense_3 dense_4 
                                   general_default2018 general_default2018_1 
                                   general_default2018_2 general_default2018_3 
                                   general_default2018_4 redock_default2018 
                                   redock_default2018_1 redock_default2018_2 
                                   redock_default2018_3 redock_default2018_4
  --cnn_model arg                  caffe cnn model file; if not specified a 
                                   default model will be used
  --cnn_weights arg                caffe cnn weights file (*.caffemodel); if 
                                   not specified default weights (trained on 
                                   the default model) will be used
  --cnn_resolution arg (=0.5)      resolution of grids, don't change unless you
                                   really know what you are doing
  --cnn_rotation arg (=0)          evaluate multiple rotations of pose (max 24)
  --cnn_update_min_frame           During minimization, recenter coordinate 
                                   frame as ligand moves
  --cnn_freeze_receptor            Don't move the receptor with respect to a 
                                   fixed coordinate system
  --cnn_mix_emp_force              Merge CNN and empirical minus forces
  --cnn_mix_emp_energy             Merge CNN and empirical energy
  --cnn_empirical_weight arg (=1)  Weight for scaling and merging empirical 
                                   force and energy 
  --cnn_outputdx                   Dump .dx files of atom grid gradient.
  --cnn_outputxyz                  Dump .xyz files of atom gradient.
  --cnn_xyzprefix arg (=gradient)  Prefix for atom gradient .xyz files
  --cnn_center_x arg               X coordinate of the CNN center
  --cnn_center_y arg               Y coordinate of the CNN center
  --cnn_center_z arg               Z coordinate of the CNN center
  --cnn_verbose                    Enable verbose output for CNN debugging

Output:
  -o [ --out ] arg                 output file name, format taken from file 
                                   extension
  --out_flex arg                   output file for flexible receptor residues
  --log arg                        optionally, write log file
  --atom_terms arg                 optionally write per-atom interaction term 
                                   values
  --atom_term_data                 embedded per-atom interaction terms in 
                                   output sd data
  --pose_sort_order arg (=0)       How to sort docking results: CNNscore 
                                   (default), CNNaffinity, Energy

Misc (optional):
  --cpu arg                        the number of CPUs to use (the default is to
                                   try to detect the number of CPUs or, failing
                                   that, use 1)
  --seed arg                       explicit random seed
  --exhaustiveness arg (=8)        exhaustiveness of the global search (roughly
                                   proportional to time)
  --num_modes arg (=9)             maximum number of binding modes to generate
  --min_rmsd_filter arg (=1)       rmsd value used to filter final poses to 
                                   remove redundancy
  -q [ --quiet ]                   Suppress output messages
  --addH arg                       automatically add hydrogens in ligands (on 
                                   by default)
  --stripH arg                     remove hydrogens from molecule _after_ 
                                   performing atom typing for efficiency (on by
                                   default)
  --device arg (=0)                GPU device to use
  --no_gpu                         Disable GPU acceleration, even if available.

Configuration file (optional):
  --config arg                     the above options can be put here

Information (optional):
  --help                           display usage summary
  --help_hidden                    display usage summary with hidden options
  --version                        display program version

CNN Scoring

--cnn_scoring determines at what points of the docking procedure that the CNN scoring function is used.

  • none - No CNNs used for docking. Uses the specified empirical scoring function throughout.
  • rescore (default) - CNN used for reranking of final poses. Least computationally expensive CNN option.
  • refinement - CNN used to refine poses after Monte Carlo chains and for final ranking of output poses. 10x slower than rescore when using a GPU.
  • all - CNN used as the scoring function throughout the whole procedure. Extremely computationally intensive and not recommended.

The default CNN scoring function is an ensemble of 5 models selected to balance pose prediction performance and runtime: dense, general_default2018_3, dense_3, crossdock_default2018, and redock_default2018. More information on these various models can be found in the papers listed above.

Training

Scripts to aid in training new CNN models can be found at https://github.com/gnina/scripts and sample models at https://github.com/gnina/models.

The DUD-E docked poses used in the original paper can be found here and the CrossDocked2020 set is here.

License

gnina is dual licensed under GPL and Apache. The GPL license is necessitated by the use of OpenBabel (which is GPL licensed). In order to use gnina under the Apache license only, all references to OpenBabel must be removed from the source code.