-
Notifications
You must be signed in to change notification settings - Fork 4
/
rbm3.py
518 lines (433 loc) · 14.7 KB
/
rbm3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import theano
import numpy as np
import theano.tensor as T
import os
import gzip
import cPickle
from utils import tile_raster_images
from utils import channel_image
import Image
from theano.tensor.shared_randomstreams import RandomStreams
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from matplotlib.cbook import get_sample_data
class stackedRBMs(object):
def __init__(
self,
rbms = None,
params_file = None,
input = None
):
self.set_params()
self.input = input
self.w = []
self.b = []
self.linear = []
self.gaussian = []
self.numpy_rng = np.random.RandomState(1234)
self.theano_rng = RandomStreams(self.numpy_rng.randint(2 ** 30))
if params_file:
output = open(params_file,'r')
sRBM_ = cPickle.load(output)
output.close()
self.num_layers = len(sRBM_.w)
self.code_layers = self.num_layers/2
self.linear = sRBM_.linear
self.gaussian = sRBM_.linear
for i in range(self.num_layers):
#self.w[i] = theano.shared(value=sRBM_.w[i].get_value(),borrow=True)
#self.b[i] = theano.shared(value=sRBM_.b[i].get_value(),borrow=True)
self.w.append(theano.shared(value=sRBM_.w[i].get_value(),borrow=True))
self.b.append(theano.shared(value=sRBM_.b[i].get_value(),borrow=True))
else:
self.code_layers = len(rbms)
self.num_layers = 2*len(rbms)
for rbm in rbms:
self.w.append(theano.shared(value=rbm.w.get_value(),borrow=True))
self.b.append(theano.shared(value=rbm.h.get_value(),borrow=True))
self.linear.append(rbm.linear)
self.gaussian.append(rbm.gaussian)
for rbm in reversed(rbms):
self.w.append(theano.shared(value=np.transpose(rbm.w.get_value()),borrow=True))
self.b.append(theano.shared(value=rbm.v.get_value(),borrow=True))
self.linear.append(rbm.linear)
self.gaussian.append(rbm.gaussian)
if rbms and self.use_momentum:
self.w_upd = []
self.b_upd = []
for rbm in rbms:
self.w_upd.append(theano.shared(value=np.zeros(rbm.w.get_value().shape,dtype=theano.config.floatX)))
self.b_upd.append(theano.shared(value=np.zeros(rbm.h.get_value().shape,dtype=theano.config.floatX)))
for rbm in reversed(rbms):
self.w_upd.append(theano.shared(value=np.zeros(np.transpose(rbm.w.get_value()).shape,dtype=theano.config.floatX)))
self.b_upd.append(theano.shared(value=np.zeros(rbm.v.get_value().shape,dtype=theano.config.floatX)))
def fprop(self):
data = self.input
for layer in range(self.num_layers):
#data = rbm.fprop(data)
pre_sigmoid = T.dot(data,self.w[layer])+self.b[layer]
if self.linear[layer]:
data = pre_sigmoid
elif self.gaussian[layer] and layer > 1:
data = pre_sigmoid + self.theano_rng.normal(size=self.b[layer].shape,dtype=theano.config.floatX)
else:
data = T.nnet.sigmoid(pre_sigmoid)
#mask = self.theano_rng.binomial(size=pre_sigmoid.shape,n=1,p=0.5,dtype=theano.config.floatX)
#data = data*mask
return data
def set_params(
self,
lr = 0.0001,
weightcost = 0.0002,
momentum = 0.2,
use_momentum = False
):
self.lr = lr
self.weightcost = weightcost
self.momentum = momentum
self.use_momentum = use_momentum
def get_cost_ent(self):
pred = self.fprop()
ent = T.nnet.binary_crossentropy(pred,self.input)
return T.mean(T.sum(ent,axis=1))
def get_code(self):
data = self.input
for layer in range(self.code_layers):
pre_sigmoid = T.dot(data,self.w[layer])+self.b[layer]
if self.linear[layer]:
data = pre_sigmoid
else:
data = T.nnet.sigmoid(pre_sigmoid)
return data
def get_cost_sqr(self):
pred = self.fprop()
cost = T.mean(T.sum(T.sqr(self.input - pred),axis=1))
return cost
def get_updates(self):
#cost = self.get_cost_ent()
cost = self.get_cost_sqr()
updates = []
for i in range(self.num_layers):
if self.use_momentum:
self.w_upd_ = self.momentum*self.w_upd[i] + self.lr*T.grad(cost,self.w[i])
self.b_upd_ = self.momentum*self.b_upd[i] + self.lr*T.grad(cost,self.b[i])
updates.append((self.w[i],self.w[i] - self.w_upd_))
updates.append((self.b[i],self.b[i] - self.b_upd_))
updates.append((self.w_upd[i],self.w_upd_))
updates.append((self.b_upd[i],self.b_upd_))
else:
updates.append((self.w[i],self.w[i] - self.lr*T.grad(cost,self.w[i])))
updates.append((self.b[i],self.b[i] - self.lr*T.grad(cost,self.b[i])))
return updates
class RBM(object):
def __init__(
self,
n_visible=784,
n_hidden=1000,
linear=False,
gaussian=False,
input = None,
w = None,
h = None,
v = None,
numpy_rng=None,
theano_rng=None
):
self.linear = linear
self.gaussian = gaussian
self.n_visible = n_visible
self.n_hidden = n_hidden
if numpy_rng is None:
numpy_rng = np.random.RandomState(1234)
if theano_rng is None:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
if w is None:
initial_W = 0.1*np.asarray(np.random.randn(n_visible, n_hidden),dtype=theano.config.floatX)
w = theano.shared(value=initial_W,borrow=True)
if h is None:
h = theano.shared(value=np.zeros(n_hidden,dtype=theano.config.floatX))
if v is None:
v = theano.shared(value=np.zeros(n_visible,dtype=theano.config.floatX))
self.input = input
if not input:
self.input = T.matrix('input')
self.w,self.h,self.v = w,h,v
self.theano_rng = theano_rng
self.params = [self.w, self.h, self.v]
self.w_upd = theano.shared(value=np.zeros((n_visible,n_hidden),dtype=theano.config.floatX))
self.v_upd = theano.shared(value=np.zeros(n_visible,dtype=theano.config.floatX))
self.h_upd = theano.shared(value=np.zeros(n_hidden,dtype=theano.config.floatX))
self.set_params()
def set_params(
self,
lr = 0.1,
weightcost = 0.0002,
MB_size = 100,
momentum = 0.5
):
self.lr = lr
self.weightcost = weightcost
self.MB_size = MB_size
self.momentum = momentum
def fprop(self,inp):
pre_sigmoid = T.dot(inp,self.w)+self.h
if self.linear:
return pre_sigmoid
else:
return T.nnet.sigmoid(pre_sigmoid)
def bprop(self,inp):
if self.gaussian:
return T.dot(inp,T.transpose(self.w))+self.v + self.theano_rng.normal(size=self.v.shape,dtype=theano.config.floatX)
else:
return T.nnet.sigmoid(T.dot(inp,T.transpose(self.w))+self.v)
def get_upds(self,inp):
w_update = T.dot(T.transpose(inp),self.fprop(inp))*(1.0/self.MB_size)
h_update = T.mean(self.fprop(inp),axis=0)
v_update = T.mean(inp,axis=0)
return w_update,h_update,v_update
def get_updates(self):
h_given_v_p = self.fprop(self.input)
if self.linear:
h_given_v_sample = h_given_v_p + self.theano_rng.normal(size=h_given_v_p.shape,dtype=theano.config.floatX)
else:
h_given_v_sample = self.theano_rng.binomial(size=h_given_v_p.shape,n=1,p=h_given_v_p,dtype=theano.config.floatX)
#h_given_v_sample = T.gt(h_given_v_p,self.theano_rng.uniform(size=h_given_v_p.shape))
v_given_h_p = self.bprop(h_given_v_sample)
#v_given_h_sample = self.theano_rng.binomial(n=1,p=v_given_h_p,dtype=theano.config.floatX)
pos_w, pos_h, pos_v = self.get_upds(self.input)
neg_w, neg_h, neg_v = self.get_upds(v_given_h_p)
w_upd_ = self.momentum*self.w_upd + self.lr*((pos_w - neg_w) - self.weightcost*self.w)
v_upd_ = self.momentum*self.v_upd + self.lr*(pos_v - neg_v)
h_upd_ = self.momentum*self.h_upd + self.lr*(pos_h - neg_h)
update = [
(self.w, self.w + w_upd_),
(self.h, self.h + h_upd_),
(self.v, self.v + v_upd_),
(self.w_upd, w_upd_),
(self.v_upd, v_upd_),
(self.h_upd, h_upd_)
]
cost = T.sum(T.sqr(self.input - v_given_h_p))*(1.0/self.MB_size)
return cost, update
# Load data
dataset_name = 'yalefaces/2'
dataset = '../data/yalefaces_aug.pkl'
datafile = open(dataset, 'r')
yalefaces = cPickle.load(datafile)
yalefaces = yalefaces - np.mean(yalefaces,axis=0)
yalefaces = yalefaces/np.std(yalefaces,axis=0)
train_set = yalefaces[:20000]
valid_set = yalefaces[20000:21000]
test_set = yalefaces[21000:21500]
#train_set, valid_set, test_set = cPickle.load(datafile)
datafile.close()
#N = train_set[0].shape[0]
#Nv = valid_set[0].shape[0]
#Nt = test_set[0].shape[0]
N = train_set.shape[0]
Nv = valid_set.shape[0]
Nt = test_set.shape[0]
# Shuffle data
#data_x = train_set[0]
data_x = train_set
np.random.shuffle(data_x)
# Shared variables for train,valid,test sets
data_x_shared = theano.shared(np.asarray(data_x, dtype=theano.config.floatX))
#valid_x_shared = theano.shared(np.asarray(valid_set[0], dtype=theano.config.floatX))
#test_x_shared = theano.shared(np.asarray(test_set[0], dtype=theano.config.floatX))
valid_x_shared = theano.shared(np.asarray(valid_set, dtype=theano.config.floatX))
test_x_shared = theano.shared(np.asarray(test_set, dtype=theano.config.floatX))
# Theano input variables
x = T.matrix()
index = T.lscalar() # index to a [mini]batch
def train_RBMs():
lr = 0.0001
weightcost = 0.0002
MB_size = 100
initialmomentum = 0.5
finalmomentum = 0.9
max_epochs = [200,50,20,20]
momentumthresh = 5
#vis, hid1, hid2, hid3, hid4 = 784,2000,500,250,3
vis, hid1, hid2, hid3, hid4 = 2016,2500,600,300,100
num_MBs = data_x.shape[0]/MB_size
rbm1 = RBM(input=x,gaussian=True,n_visible=vis ,n_hidden=hid1)
rbm2 = RBM(input=x,n_visible=hid1,n_hidden=hid2)
rbm3 = RBM(input=x,n_visible=hid2,n_hidden=hid3)
rbm4 = RBM(input=x,linear=True,n_visible=hid3,n_hidden=hid4) #Top layer is linear
rbm1.set_params(lr=0.001,weightcost=0.0002)
rbm2.set_params(lr=0.001,weightcost=0.0002)
rbm3.set_params(lr=0.001,weightcost=0.0002)
rbm4.set_params(lr=0.001,weightcost=0.0002)
rbms = [rbm1, rbm2, rbm3, rbm4]
data = [data_x_shared]
# Plot image sizes
img_size = [(50,50),(20,25),(10,25),(5,6)]
# Train the four layers sequentially
count = -1
for rbm_i in range(4):
rbm = rbms[rbm_i]
cost, update = rbm.get_updates()
train = theano.function(
inputs=[index],
outputs=cost,
updates=update,
givens={
x: data[-1][index * MB_size: (index + 1) * MB_size]
}
)
errs = np.zeros(num_MBs)
count += 1
for epoch in range(max_epochs[count]):
if epoch>momentumthresh:
rbm.set_params(momentum=finalmomentum)
#else:
# momentum=initialmomentum
for MB in range(num_MBs):
err = train(MB)
errs[MB] = err
if epoch%1 == 0:
#Plot reconstructions (Applicable only to first layer)
#image = Image.fromarray(
# tile_raster_images(
# X=rbm.w.get_value(borrow=True).T,
# img_shape=(48, 42),
# tile_shape=img_size[rbm_i],
# tile_spacing=(1, 1)
# )
#)
#image.save('../filters/%i.png' % epoch)
#err = np.sum((data_x - neg_sample.get_value(borrow=True))**2)
print epoch,errs.mean()*N
data.append(rbm.fprop(data[-1]))
# Dump parameters
output = open(dataset_name + '/rbms.pkl','w')
cPickle.dump(rbms,output)
output.close()
def train_stackedRBMs():
# Load pre-trained parameters
datafile = open(dataset_name + '/rbms.pkl', 'r')
rbms = cPickle.load(datafile)
datafile.close()
sRBM = stackedRBMs(rbms=rbms,input=x)
#Plot reconstructions after pre-training
#get_code = theano.function(inputs=[],outputs=sRBM.fprop(),givens={x: data_x_shared})
#code,recon = get_code()
#img = Image.fromarray(tile_raster_images(X=recon,img_shape=(28,28),tile_shape=(100,100)))
#img.save('img.png')
MB_size = 100
num_MBs = N/MB_size
max_epochs = 1000
train_errors = []
valid_errors = []
errs = np.zeros(num_MBs)
train = theano.function(
inputs=[index],
outputs=sRBM.get_cost_sqr(),
updates=sRBM.get_updates(),
givens={
x: data_x_shared[index * MB_size: (index + 1) * MB_size]
}
)
valid = theano.function(
inputs=[index],
outputs=sRBM.get_cost_sqr(),
givens={
x: valid_x_shared[index * Nv: (index + 1) * Nv]
}
)
momentumthresh = 5
finalmomentum = 0.9
for epoch in range(max_epochs):
#if epoch>momentumthresh:
# sRBM.set_params(momentum=finalmomentum)
#else:
# momentum=initialmomentum
for MB in range(num_MBs):
err = train(MB)
errs[MB] = err
if epoch%1 == 0:
valid_error = valid(0)
print epoch,errs.mean(),valid_error
train_errors.append(errs.mean())
valid_errors.append(valid_error)
# Dump params
output = open(dataset_name + '/srbm.pkl','w')
cPickle.dump(sRBM,output)
cPickle.dump(train_errors,output)
cPickle.dump(valid_errors,output)
output.close()
def imscatter(x, y, image, ax, artists, zoom=1):
#if ax is None:
#x, y = np.atleast_1d(x, y)
#artists = []
return artists
def test_model():
# Load pre-trained parameters
#datafile = open(dataset_name + '/srbm.pkl', 'r')
#srbm = cPickle.load(datafile)
#datafile.close()
sRBM = stackedRBMs(params_file=dataset_name + '/srbm.pkl',input=x)
train = theano.function(
inputs=[index],
outputs=[sRBM.get_cost_sqr(),sRBM.fprop(),sRBM.get_code()],
givens={
x: data_x_shared[index * N: (index + 1) * N]
}
)
test = theano.function(
inputs=[index],
outputs=[sRBM.get_cost_sqr(),sRBM.fprop(),sRBM.get_code()],
givens={
x: test_x_shared[index * Nt: (index + 1) * Nt]
}
)
test_error, test_recon, test_code = test(0)
print test_error
img = Image.fromarray(tile_raster_images(X=test_recon,img_shape=(48,42),tile_shape=(20,25)))
img.save(dataset_name + '/recon.png')
#rs = cm.rainbow(np.linspace(0, 1, 10))
#print test_code.shape
#for i in range(10):
# ix = test_code[np.where(test_set[1] == i)]
# #print ix
# plt.scatter(ix[:,0],ix[:,1],color=rs[i])
##test_set[1]
#plt.savefig(dataset_name + '/clusters.png')
train_error, train_recon, train_code = train(0)
datax,test_code = train_set,train_code
ax = plt.gca()
artists = []
zoom = 0.3
#datax = test_set
fig, ax = plt.subplots()
for i in range(N):
#inds = np.where(test_set[1] == i)
#ix = test_code[inds]
#print ix
#imscatter(ix[:,0], ix[:,1], datax, zoom = 0.5, ax = ax, artists = artists)
#x_ = ix[:,0]
#y_ = ix[:,1]
#i = 0
#for x0, y0 in zip(x_, y_):
#img = Image.fromarray(tile_raster_images(X=(1 - datax[i][np.newaxis],None,None,None),img_shape=(28,28),tile_shape=(1,1)))
channel = datax[i][np.newaxis]
img = Image.fromarray(tile_raster_images(X=(channel,channel,channel,channel),img_shape=(48,42),tile_shape=(1,1)))
#img = Image.fromarray(channel_image(X=1 - datax[i][np.newaxis],img_shape=(28,28),tile_shape=(1,1)))
img.save('test.png')
img = plt.imread(get_sample_data('/home/llajan/RBM/from_scratch/test.png'))
im = OffsetImage(img, zoom=zoom)
ab = AnnotationBbox(im, (test_code[i][0], test_code[i][1]), xycoords='data', frameon=False)
artists.append(ax.add_artist(ab))
ax.update_datalim(np.column_stack([test_code[:,0],test_code[:,1]]))
ax.autoscale()
#ax.scatter(ix[:,0],ix[:,1])
#plt.scatter(ix[:,0],ix[:,1],color=rs[i])
#test_set[1]
plt.savefig(dataset_name + '/clusters1.eps', format='eps', dpi=1000)
#plt.savefig(dataset_name + '/clusters1.png')
#test_model()
#train_RBMs()
#train_stackedRBMs()
test_model()