-
Notifications
You must be signed in to change notification settings - Fork 0
/
RunExperiment.jl
50 lines (43 loc) · 1.22 KB
/
RunExperiment.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
include("src/experiment_helper.jl")
include("src/utils/Utils.jl")
include("src/models/Models.jl")
include("src/dataset/Dataset.jl")
include("src/trainer.jl")
include("src/inference.jl")
include("src/NeuralOverlap.jl")
include("src/experiment_helper.jl")
using Flux
using .NeuralOverlap: run_experiment
function main()::Nothing
experiment_args = ExperimentParams(
# Dataset size
NUM_TRAIN_EXAMPLES=10000,
NUM_EVAL_EXAMPLES=5000,
NUM_TEST_EXAMPLES=100000,
MAX_INFERENCE_SAMPLES=10000,
NUM_BATCHES_PER_EPOCH=128,
NUM_EPOCHS=50,
USE_SYNTHETIC_DATA = false,
USE_SEQUENCE_DATA = true,
# Models
N_READOUT_LAYERS = 1,
READOUT_ACTIVATION = relu,
N_INTERMEDIATE_CONV_LAYERS = 3,
CONV_ACTIVATION = identity,
USE_INPUT_BATCHNORM = false,
USE_INTERMEDIATE_BATCHNORM = true,
USE_READOUT_DROPOUT = false,
CONV_ACTIVATION_LAYER_MOD = 2,
# Pooling
POOLING_METHOD = "mean",
POOL_KERNEL = 2,
# Model
OUT_CHANNELS = 8,
KERNEL_SIZE = 3,
EMBEDDING_DIM = 128,
DISTANCE_METHOD ="l2",
)
run_experiment(experiment_args)
return nothing
end
main()