-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.R
411 lines (352 loc) · 13 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
library(tidyverse)
library(plotly)
library(shiny)
library(shinythemes)
#### Import data and preliminaries ####
export <-
read.csv('2018-2010_export.csv') %>% mutate(value = replace_na(value, 0))
import <-
read.csv('2018-2010_import.csv') %>% mutate(value = replace_na(value, 0))
# Create list of commodites
export_com <-
export %>% select(HSCode, Commodity) %>% mutate(comname = str_c(HSCode, " - ", Commodity)) %>% select(comname) %>% unique()
import_com <-
import %>% select(HSCode, Commodity) %>% mutate(comname = str_c(HSCode, " - ", Commodity)) %>% select(comname) %>% unique()
list_of_commodities <-
unique((export_com %>% rbind(import_com))$comname)
# Create list of countries
export_country <- export %>% select(country) %>% unique()
import_country <- import %>% select(country) %>% unique()
list_of_countries <-
unique((export_country %>% rbind(import_country))$country)
form_yaxis <- list(tickfont = list(size = 14))
#### Plotting functions start here ####
export_commodity_average <- function(HSC) {
comtrend <- export %>% group_by(HSCode, Commodity, year) %>%
summarise(`Average Value` = mean(value)) %>%
filter(HSCode %in% HSC)
g <-
ggplot(comtrend, aes(x = year, y = `Average Value`, color = Commodity)) +
geom_line() +
labs(
y = 'Value (in million US$)',
x = 'Year',
title = paste0(
'<b>Exports of commodity</b>',
'<br><sup>',
'Average value of exports (in million US$)',
'</sup>'
)
)
p <-
ggplotly(g,
dynamicTicks = TRUE,
tooltip = c('colour', 'y')) %>% layout(autosize = TRUE,
hovermode = 'compare',
yaxis = form_yaxis) %>% hide_legend() %>% config(displayModeBar = F)
return(p)
}
import_commodity_average <- function(HSC) {
comtrend <- import %>% group_by(HSCode, Commodity, year) %>%
summarise(`Average Value` = mean(value)) %>%
filter(HSCode %in% HSC)
g <-
ggplot(comtrend, aes(x = year, y = `Average Value`, color = Commodity)) +
geom_line() +
labs(
y = 'Value (in million US$)',
x = 'Year',
title = paste0(
'<b>Imports of commodity</b>',
'<br><sup>',
'Average value of imports (in million US$)',
'</sup>'
)
)
p <-
ggplotly(g,
dynamicTicks = TRUE,
tooltip = c('colour', 'y')) %>% layout(autosize = TRUE,
hovermode = 'compare',
yaxis = form_yaxis) %>% hide_legend() %>% config(displayModeBar = F)
return(p)
}
top_export_countries <- function(HSC) {
country_trend <- export %>% filter(HSCode %in% HSC) %>%
group_by(year, HSCode) %>% top_n(1, value)
g <-
ggplot(country_trend, aes(x = year, y = value, fill = country)) +
geom_col() +
facet_wrap( ~ Commodity, scales = 'free', dir = 'v') +
labs(
y = 'Value (in million US$)',
x = 'Year',
title = paste0('<b>Top countries exported to</b>'),
fill = 'Country'
) +
scale_fill_discrete()
p <-
ggplotly(g, dynamicTicks = TRUE) %>% layout(autosize = T) %>% config(displayModeBar = F)
return(p)
}
top_import_countries <- function(HSC) {
country_trend <- import %>% filter(HSCode %in% HSC) %>%
group_by(year, HSCode) %>% top_n(1, value)
g <-
ggplot(country_trend, aes(x = year, y = value, fill = country)) +
geom_col() +
facet_wrap( ~ Commodity, scales = 'free', dir = 'v') +
labs(
y = 'Value (in million US$)',
x = 'Year',
title = paste0('<b>Top countries imported from</b>'),
fill = 'Country'
) +
scale_fill_discrete()
p <-
ggplotly(g, dynamicTicks = TRUE) %>% layout(autosize = T) %>% config(displayModeBar = F)
return(p)
}
plot_totals <- function(u_country) {
export_country <- export %>% filter(country == u_country)
import_country <- import %>% filter(country == u_country)
totals <- export_country %>% group_by(year) %>%
summarise(value = sum(value)) %>%
inner_join((
import_country %>%
group_by(year) %>%
summarise(value = sum(value))
), by = 'year') %>%
rename('Exports' = value.x, 'Imports' = value.y) %>%
mutate('Balance' = Exports - Imports) %>%
gather(key = 'trade_flow', value = 'value',-year)
g <- ggplot(totals, aes(x = year, y = value, fill = trade_flow)) +
geom_col(position = position_dodge2()) +
scale_fill_manual(
values = c(
'Balance' = 'grey50',
'Exports' = 'lightslateblue',
'Imports' = 'firebrick2'
)
) +
labs(
y = 'Value (in million US$)',
x = 'Year',
title = paste0('<b>Trade flow with ', u_country, '</b>'),
fill = ''
) +
scale_y_continuous(labels = scales::comma)
p <-
ggplotly(g, tooltip = 'y') %>% layout(autosize = T) %>% config(displayModeBar = F)
return(p)
}
export_country_commodity <- function(u_country, u_HSC) {
export_country <-
export %>% filter(country == u_country) %>% filter(HSCode %in% u_HSC)
g <-
ggplot(export_country %>% rename(Value = value),
aes(x = year, y = Value, color = Commodity)) +
geom_line() +
labs(
y = 'Value (in million US$)',
x = 'Year',
title = paste0('<b>Exports</b> to <b>', u_country, '</b>')
)
p <-
ggplotly(g,
dynamicTicks = TRUE,
tooltip = c('colour', 'y')) %>% layout(autosize = TRUE,
hovermode = 'compare',
yaxis = form_yaxis) %>% hide_legend() %>% config(displayModeBar = F)
return(p)
}
import_country_commodity <- function(u_country, u_HSC) {
import_country <-
import %>% filter(country == u_country) %>% filter(HSCode %in% u_HSC)
g <-
ggplot(import_country %>% rename(Value = value),
aes(x = year, y = Value, color = Commodity)) +
geom_line() +
labs(
y = 'Value (in million US$)',
x = 'Year',
title = paste0('<b>Imports</b> from <b>', u_country, '</b>')
)
p <-
ggplotly(g,
dynamicTicks = TRUE,
tooltip = c('colour', 'y')) %>% layout(autosize = T,
hovermode = 'compare',
yaxis = form_yaxis) %>% hide_legend() %>% config(displayModeBar = F)
return(p)
}
#### App starts here ####
# Define UI
ui <- fluidPage(
theme = shinytheme('flatly'),
titlePanel("India Trade Dashboard"),
tabsetPanel(
tabPanel('Overview',
fluidRow(
column(
12,
h3('Click on the tabs above to get started.'),
br(),
wellPanel(
h3(
"This dashboard visualises the multilateral trade flow of India between 2010 and 2018"
),
h5(
'1. Commodity-wise shows the flow of trade based on selected commodities.
Specifically, it shows the trend of exports/imports and the top countries for the selected commodities.'
),
h5(
'2. Country-wise shows the flow of trade with the selected country.
Specifically, it shows the trade balance with the country and allows for commodity-level information as well.'
)
),
br(),
wellPanel(
HTML(
'<h4>Created by <a href = "https://github.com/lakshyaag/" target = "_blank">Lakshya Agarwal.</a></h4>'
),
h4(
'All values are in US$ million. The information has been gathered from Deparment of Commerce, Govt. of India.'
),
HTML(
'<h6>For more information on how the data was collected,
click <a href=https://github.com/lakshyaag/India-Trade-Data/>here</a></h6>'
)
)
)
)),
tabPanel(
'Commodity-level',
fluidRow(column(
12,
selectizeInput(
'commodity_select',
'Commodity',
choices = NULL,
width = '100%',
multiple = T,
options = list(maxItems = 5, placeholder = 'Select commodities (max. 5)')
)
)),
fluidRow(column(
6, plotlyOutput('export_commodity_average')
),
column(
6, plotlyOutput('import_commodity_average')
)),
fluidRow(column(6, plotlyOutput(
'top_export_countries'
)),
column(6, plotlyOutput(
'top_import_countries'
)))
),
tabPanel(
'Country-level',
fluidRow(column(
3,
selectizeInput(
'country_select',
'Country',
choices = NULL,
width = '100%',
multiple = F,
options = list(placeholder = 'Select country')
)
),
column(
9,
selectizeInput(
'country_commodity_select',
'Commodity',
choices = NULL,
width = '100%',
multiple = T,
options = list(maxItems = 5, placeholder = 'Select commodities (max. 5)')
)
)),
fluidRow(column(12,
plotlyOutput('plot_totals'))),
fluidRow(column(
6,
plotlyOutput('export_country_commodity')
),
column(
6,
plotlyOutput('import_country_commodity')
))
)
)
)
# Define server
server <- function(input, output, session) {
updateSelectizeInput(
session,
'commodity_select',
choices = list_of_commodities,
server = TRUE,
selected = c(list_of_commodities[35], list_of_commodities[25])
)
updateSelectizeInput(
session,
'country_select',
choices = list_of_countries,
server = TRUE,
selected = list_of_countries[1]
)
updateSelectizeInput(
session,
'country_commodity_select',
choices = list_of_commodities,
server = TRUE,
selected = c(list_of_commodities[35], list_of_commodities[25])
)
selectedHSC <-
reactive({
as.integer(str_extract(input$commodity_select, '(\\d*)'))
})
selectedHSC_country <-
reactive({
as.integer(str_extract(input$country_commodity_select, '(\\d*)'))
})
output$export_commodity_average <- renderPlotly({
export_commodity_average({
selectedHSC()
})
})
output$import_commodity_average <- renderPlotly({
import_commodity_average({
selectedHSC()
})
})
output$top_export_countries <- renderPlotly({
top_export_countries({
selectedHSC()
})
})
output$top_import_countries <- renderPlotly({
top_import_countries({
selectedHSC()
})
})
output$plot_totals <- renderPlotly({
plot_totals(input$country_select)
})
output$export_country_commodity <- renderPlotly({
export_country_commodity(input$country_select, {
selectedHSC_country()
})
})
output$import_country_commodity <- renderPlotly({
import_country_commodity(input$country_select, {
selectedHSC_country()
})
})
}
# Run the application
shinyApp(ui = ui, server = server)