Skip to content

Latest commit

 

History

History
48 lines (28 loc) · 995 Bytes

README.md

File metadata and controls

48 lines (28 loc) · 995 Bytes

GANLDA

The implementation of “GANLDA: Graph attention network for lncRNA-disease associations prediction”, Wei Lan, Ximin Wu, Qingfeng Chen, Wei Peng, Jianxin Wang, Yiping Phoebe Chen. Neurocomputing, 2021. The GAT layer is based on DGL.

Requirement

  • Python 3.6

  • Numpy

  • dgl

  • Sklearn

  • scipy

  • matplotlib

  • random

  • math

  • h5py

  • pickle

  • torch

  • argparse

  • itertools

Data

The diseases and lncRNAs association matrix: lncRNA_disease_Associations.h5

The diseases features: disease_Features.h5

The lncRNAs features: lncRNA_Features.h5

The lncRNAs name: lncRNA-name.xlsx

The disease doid: doid.xlsx

Run

The ganlda init program entry: ganlda_init.py

The 10-fold program entry: tenfold.py

The denovo program entry: denovo.py

Obtain the score matrix

If you want to obtain score matrix by GANLDA framework, please run ganlda_init.py directly.