-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathVALIDATION_table_3.m
126 lines (109 loc) · 4.07 KB
/
VALIDATION_table_3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
% This code generates the validation table 3 for AUC (area under Betti curve)
% statistic published in Das, S., Anand, D.V., Chung, M.K. 2022 Topological
% data analysis for human brain networks through order statistics arXiv:2204.02527.
%
% The code is downloaded from https://github.com/laplcebeltrami/orderstat
% (C) 2021 Soumya Das, Moo K. Chung
% University of Wisconsin-Madison
%
% Update history:
% Credited Nov 1, 2021 Das
% Edited April 27, 2022 Chung
clc;
close all;
clear all;
%-----------
% Generate two samples of networks
p = 10; % number of nodes
q = p*(p-1)/2; % number of edges
m0 = p-1; % number of connected components - 1
m1 = (p-1)*(p-2)/2; % number of cycles
nn = 6;
nG1=nn; % number of networks in first group
nG2=nn; % number of networks in second group
G1 = betarnd(1, 1, [nG1 q]); % sample n networks for Group 1
G2 = betarnd(5, 2, [nG2 q]); % sample n networks for Group 2
% Empirical estimation of time-instances for first group
b_G1 = zeros(nG1,m0); % initialize birth instances for first group
d_G1 = zeros(nG1,m1); % initialize death instances for first group
for i=1:nG1
upper_tri_vec = G1(i,:);
C = zeros(p,p);
C(logical(triu(ones(size(C)), 1))) = upper_tri_vec;
C = C + C.' + eye(p); % calculate weighted adjacency matrix
b0 = conncomp_birth(C).'; % compute a set of increasing birth values
b_G1(i,:) = find(ismember(sort(upper_tri_vec),b0(3,:))); % store birth instances
d_G1(i,:) = find(~ismember(sort(upper_tri_vec),b0(3,:))); % store death instances
end
mean_b_G1 = mean(b_G1); % find mean of birth instances for first group
mean_d_G1 = mean(d_G1); % find mean of death instances for first group
% Empirical estimation of time-instances for second group
b_G2 = zeros(nG2,m0); % initialize birth instances for second group
d_G2 = zeros(nG2,m1); % initialize birth instances for second group
for i=1:nG2
upper_tri_vec = G2(i,:);
C = zeros(p,p);
C(logical(triu(ones(size(C)), 1))) = upper_tri_vec;
C = C + C.' + eye(p); % calculate weighted adjacency matrix
b0 = conncomp_birth(C).'; % compute a set of increasing birth values
b_G2(i,:) = find(ismember(sort(upper_tri_vec),b0(3,:))); % store birth instances
d_G2(i,:) = find(~ismember(sort(upper_tri_vec),b0(3,:))); % store death instances
end
mean_b_G2 = mean(b_G2); % find mean of birth instances for second group
mean_d_G2 = mean(d_G2); % find mean of death instances for second group
% Estimate birth and death values for first group
inv_F_b_x = zeros(nG1,m0);
inv_F_d_x = zeros(nG1,m1);
for j=1:nG1
[f,z] = ecdf(G1(j,:));
% Estimate birth values
r = (mean_b_G1)/(q+1);
for i=1:m0
pos = find(r(i)<=f,1);
inv_F_b_x(j,i) = z(pos);
end
% Estimate death values
r = (mean_d_G1)/(q+1);
for i=1:m1
pos = find(r(i)<=f,1);
inv_F_d_x(j,i) = z(pos);
end
end
% Estimate birth and death values for second group
inv_F_b_y = zeros(nG2,m0);
inv_F_d_y = zeros(nG2,m1);
for j=1:nG2
[f,z] = ecdf(G2(j,:));
% Estimate birth values
r = (mean_b_G2)/(q+1);
for i=1:m0
pos = find(r(i)<=f,1);
inv_F_b_y(j,i) = z(pos);
end
% Estimate death values
r = (mean_d_G2)/(q+1);
for i=1:m1
pos = find(r(i)<=f,1);
inv_F_d_y(j,i) = z(pos);
end
end
b1 = [zeros(size(inv_F_b_x,1),1) inv_F_b_x];
d1 = [zeros(size(inv_F_d_x,1),1) inv_F_d_x];
b2 = [zeros(size(inv_F_b_y,1),1) inv_F_b_y];
d2 = [zeros(size(inv_F_d_y,1),1) inv_F_d_y];
AUC1 = zeros(nG1,1);
for i=1:nG1
for k=2:m0
AUC1(i) = AUC1(i) + k*(b1(i,(k+1)) - b1(i,k));
end
end
AUC2 = zeros(nG2,1);
for i=1:nG2
for k=2:m0
AUC2(i) = AUC2(i) + k*(b2(i,(k+1)) - b2(i,k));
end
end
% Wilcoxon rank-sum test
[p,h] = ranksum(AUC1,AUC2);
p % pvalue
h; % decision