Skip to content

DTITR: End-to-End Drug-Target Binding Affinity Prediction with Transformers

Notifications You must be signed in to change notification settings

larngroup/DTITR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DTITR: End-to-End Drut-Target Binding Affinity Prediction with Transformer

We propose an end-to-end Transformer-based architecture (DTITR) for predicting the logarithmic-transformed quantitative dissociation constant (pKd) of DTI pairs, where self-attention layers are exploited to learn the short and long-term biological and chemical context dependencies between the sequential and structural units of the protein sequences and compound SMILES strings, respectively, and cross-attention layers to exchange information and learn the pharmacological context associated with the interaction space. The architecture makes use of two parallel Transformer-Encoders to compute a contextual embedding of the protein sequences and SMILES strings, and a Cross-Attention Transformer-Encoder block to model the interaction, where the resulting aggregated representation hidden states are concatenated and used as input for a Fully-Connected Feed-Forward Network.

DTITR Architecture

Davis Kinase Binding Affinity

Dataset

  • davis_original_dataset: original dataset
  • davis_dataset_processed: dataset processed : prot sequences + rdkit SMILES strings + pkd values

Clusters

  • test_cluster: independent test set indices
  • train_cluster_X: train indices

Similarity

  • protein_sw_score: protein Smith-Waterman similarity scores
  • protein_sw_score_norm: protein Smith-Waterman similarity normalized scores
  • smiles_ecfp6_tanimoto_sim: SMILES Morgan radius 3 similarity scores

Dictionaries

  • davis_prot_dictionary: AA char-integer dictionary
  • davis_smiles_dictionary: SMILES char-integer dictionary
  • protein_codes_uniprot/subword_units_map_uniprot: Protein Subwords Dictionary
  • drug_codes_chembl/subword_units_map_chembl: SMILES Subwords Dictionary

Requirements:

  • Python 3.9.6
  • Tensorflow 2.6.0
  • Numpy
  • Pandas
  • Scikit-learn
  • Itertools
  • Matplotlib
  • Seaborn
  • Glob
  • Json
  • periodictable
  • subword_nmt

Usage

(The architecture supports the use of the Linear Multi-Head Attention arXiv:2006.04768)

Training

python dtitr_model.py --option Train --num_epochs 500 --batch_dim 32 --prot_transformer_depth 3 --smiles_transformer_depth 3 --cross_block_depth 1 --prot_transformer_heads 4 --smiles_transformer_heads 4 --cross_block_heads 4 --prot_parameter_sharing '' --prot_dim_k 0 --prot_ff_dim 512 --smiles_ff_dim 512 --d_model 128 --dropout_rate 0.1 --dense_atv_fun gelu --out_mlp_depth 3 --out_mlp_hdim 512 512 512 --optimizer_fn radam 1e-04 0.9 0.999 1e-08 1e-05

Validation

python dtitr_model.py --option Validation --num_epochs 500 --batch_dim 32 --prot_transformer_depth 2 3 4 --smiles_transformer_depth 2 3 4 --cross_block_depth 1 2 3 4 --prot_transformer_heads 4 --smiles_transformer_heads 4 --cross_block_heads 4 --prot_parameter_sharing '' --prot_dim_k 0 --prot_ff_dim 512 --smiles_ff_dim 512 --d_model 128 --dropout_rate 0.1 --dense_atv_fun gelu --out_mlp_depth 3 --out_mlp_hdim 512 512 512 --optimizer_fn radam 1e-04 0.9 0.999 1e-08 1e-05

Evaluation

python dtitr_model.py --option Evaluation

About

DTITR: End-to-End Drug-Target Binding Affinity Prediction with Transformers

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages