Skip to content

An R package for fitting nested common and shared atoms models via MCMC. See also github.com/Fradenti/SANvi for variational Bayes methods.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

laura-dangelo/SANple

Repository files navigation

SANple v0.2.0

CRAN Last Commit Downloads (monthly) Downloads (total)

The goal of SANple is to estimate Bayesian nested mixture models via MCMC methods. Specifically, the package implements the common atoms model (Denti et al., 2023), hybrid finite-infinite models (D’Angelo and Denti, 2024). All models use Gaussian mixtures with a normal-inverse-gamma prior distribution on the parameters. Additional functions are provided to help analyzing the results of the fitting procedure.

Installation

You can install the development version of SANple from GitHub with:

# install.packages("devtools")
devtools::install_github("laura-dangelo/SANple")

Example

This is a basic example which shows you how to solve a common problem:

library(SANple)
#> Loading required package: scales
#> Loading required package: RColorBrewer

## basic example code
set.seed(123)
y <- c(rnorm(50,-5,1), rnorm(170,0,1),rnorm(70,5,1))
g <- c(rep(1,150), rep(2, 140))
plot(density(y[g==1]), xlim = c(-10,10), main = "", xlab = "")
lines(density(y[g==2]), col = "cyan4")

out <- sample_fiSAN(nrep = 3000, burn = 1000, y = y, group = g, beta = 1)
out 
#> 
#> MCMC result of fiSAN model 
#> -----------------------------------------------
#> Model estimated on 290 total observations and 2 groups 
#> Total MCMC iterations: 3000 
#> maxL: 50 - maxK: 50 
#> Elapsed time: 1.453 secs
clusters <- estimate_clusters(out)
clusters
#> 
#> Summary of the estimated observational and distributional clusters 
#> 
#> ----------------------------------
#> Estimated number of observational clusters: 4 
#> Estimated number of distributional clusters: 2 
#> ----------------------------------
#> 
#> Distributional cluster 1 
#>     post_mean  post_var
#> 1 -4.96559645 0.8572352
#> 2 -0.05374608 0.9306906
#> 
#> Distributional cluster 2 
#>     post_mean  post_var
#> 3 -0.00160923 0.7737203
#> 4  5.03452815 0.8314760
plot(out, estimated_clusters = clusters)

References

D’Angelo, L., and Denti, F. (2024). A Finite-Infinite Shared Atoms Nested Model for the Bayesian Analysis of Large Grouped Data Sets. Bayesian Analysis

Denti, F., Camerlenghi, F., Guindani, M., Mira, A., 2023. A Common Atoms Model for the Bayesian Nonparametric Analysis of Nested Data. Journal of the American Statistical Association. 118(541), 405–416.

About

An R package for fitting nested common and shared atoms models via MCMC. See also github.com/Fradenti/SANvi for variational Bayes methods.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published