-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
63 lines (47 loc) · 2.54 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# SANple v0.2.0 <img src="man/figures/sanple_draft.png" align="right" width="120" />
<!-- badges: start
[![R-CMD-check](https://github.com/laura-dangelo/SANple/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/laura-dangelo/SANple/actions/workflows/R-CMD-check.yaml)
-->
[![CRAN](https://www.r-pkg.org/badges/version/SANple)](https://cran.r-project.org/package=SANple)
[![Last Commit](https://img.shields.io/github/last-commit/laura-dangelo/SANple)](https://github.com/laura-dangelo/SANple)
[![Downloads (monthly)](https://cranlogs.r-pkg.org/badges/SANple?color=brightgreen)](https://www.r-pkg.org/pkg/SANple)
[![Downloads (total)](https://cranlogs.r-pkg.org/badges/grand-total/SANple?color=brightgreen)](https://www.r-pkg.org/pkg/SANple)
<!-- badges: end -->
The goal of SANple is to estimate Bayesian nested mixture models via MCMC methods. Specifically, the package implements the common atoms model (Denti et al., 2023), hybrid finite-infinite models (D'Angelo and Denti, 2024). All models use Gaussian mixtures with a normal-inverse-gamma prior distribution on the parameters. Additional functions are provided to help analyzing the results of the fitting procedure.
## Installation
You can install the development version of SANple from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("laura-dangelo/SANple")
```
## Example
This is a basic example which shows you how to solve a common problem:
```{r example}
library(SANple)
## basic example code
set.seed(123)
y <- c(rnorm(50,-5,1), rnorm(170,0,1),rnorm(70,5,1))
g <- c(rep(1,150), rep(2, 140))
plot(density(y[g==1]), xlim = c(-10,10), main = "", xlab = "")
lines(density(y[g==2]), col = "cyan4")
out <- sample_fiSAN(nrep = 3000, burn = 1000, y = y, group = g, beta = 1)
out
clusters <- estimate_clusters(out)
clusters
plot(out, estimated_clusters = clusters)
```
# References
D’Angelo, L., and Denti, F. (2024). A Finite-Infinite Shared Atoms Nested Model for the Bayesian Analysis of Large Grouped Data Sets. *Bayesian Analysis* \doi{10.1214/24-BA1458}
Denti, F., Camerlenghi, F., Guindani, M., Mira, A., 2023. A Common Atoms Model for the Bayesian Nonparametric Analysis of Nested Data. *Journal of the American Statistical Association*. 118(541), 405–416. \doi{10.1080/01621459.2021.1933499}