This repository has been archived by the owner on May 3, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnetParams.py
250 lines (220 loc) · 10.1 KB
/
netParams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
'''
This is the netParams.py file for the NetPyNE Project by L Medlock & M Mazar
'''
from netpyne import specs, sim
from neuron import h, gui
import matplotlib
import os
import sys
sys.path.insert(0, 'cells') # adding path to cells dir
import ais_variables
try:
from __main__ import cfg
except:
from cfg import cfg
# Network parameters
netParams = specs.NetParams() # object of class NetParams to store the network parameters
netParams.defaultThreshold = 0.0
###############################################################################
# CELL PARAMETERS
###############################################################################
# Inhibitory Spinal Neurons (Tonic Spiking)
netParams.importCellParams(
label='dh_tonic_interneuron',
conds={'cellType': 'IHB', 'cellModel': 'TONIC'},
fileName=('ais_model.py'),
cellName='laminaNeuron',
importSynMechs=False)
netParams.cellParams['dh_tonic_interneuron']['secs']['spacer']['geom']['L'] = cfg.spacerL
netParams.cellParams['dh_tonic_interneuron']['secs']['soma']['threshold'] = 0.0
# Delayed Spiking (Excitatory)
netParams.cellParams['E_delay'] = {'secs': {'soma': {}}}
netParams.cellParams['E_delay']['secs']['soma']['geom'] = {
'diam': 19.55,
'L' : 19.55,
'Ra' : 1000,
'nseg': 1
}
netParams.cellParams['E_delay']['secs']['soma']['ions'] = {
'k': {'e': -88.0},
'na': {'e': 55.0},
}
netParams.cellParams['E_delay']['secs']['soma']['mechs'] = {
'leak': {'g': 0.00002},
'kv1': {'gkbar': 0.00006},
'kv2': {'gkbar': 0.002},
'kv3': {'gkbar': 0.00005},
'kv4': {'gkbar': 0.011},
'nav1p1': {'gnabar': 0},
'nav1p6': {'gnabar': 0},
'nav1p7': {'gnabar': 0.03},
'nav1p8': {'gnabar': 0.04},
}
# Single Spiking (Excitatory)
netParams.cellParams['E_single'] = {'secs': {'soma': {}}}
netParams.cellParams['E_single']['secs']['soma']['geom'] = {
'diam': 30.90,
'L' : 30.90,
'Ra' : 1000,
'nseg': 1
}
netParams.cellParams['E_single']['secs']['soma']['ions'] = {
'k': {'e': -88.0},
'na': {'e': 55.0},
}
netParams.cellParams['E_single']['secs']['soma']['mechs'] = {
'leak': {'g': 0.0001},
'kv1': {'gkbar': 0.006},
'kv2': {'gkbar': 0.012},
'kv3': {'gkbar': 0.004},
'kv4': {'gkbar': 0.0008},
'nav1p1': {'gnabar': 0.008},
'nav1p6': {'gnabar': 0.04},
'nav1p7': {'gnabar': 0.005},
'nav1p8': {'gnabar': 0},
}
# Tonic Spiking (Excitatory)
netParams.cellParams['E_tonic'] = {'secs': {'soma': {}}}
netParams.cellParams['E_tonic']['secs']['soma']['geom'] = {
'diam': 19.55,
'L' : 19.55,
'Ra' : 1000,
'nseg': 1
}
netParams.cellParams['E_tonic']['secs']['soma']['ions'] = {
'k': {'e': -88.0},
'na': {'e': 55.0},
}
netParams.cellParams['E_tonic']['secs']['soma']['mechs'] = {
'leak': {'g': 0.00002},
'kv1': {'gkbar': 0.00006},
'kv2': {'gkbar': 0.002},
'kv3': {'gkbar': 0.00005},
'kv4': {'gkbar': 0.0001},
'nav1p1': {'gnabar': 0},
'nav1p6': {'gnabar': 0},
'nav1p7': {'gnabar': 0.03},
'nav1p8': {'gnabar': 0.04}
}
###############################################################################
# POPULATION PARAMETERS
###############################################################################
# PANs
netParams.popParams['PAN'] = {'cellType':'E_delay',
'cellModel': 'E_delay',
'gridSpacing': 50,
'xRange' : [0,200],
'yRange' : [0,200],
'zRange' : [0,0]
}
#Tonic Pop (Inhibitory)
netParams.popParams['I_tonic'] = {'cellType': 'IHB',
'numCells': 5,
'cellModel': 'TONIC',
'xRange' : [150,350],
'yRange' : [150,350],
'zRange' : [300,400] }
# Delayed Pop (Excitatory)
netParams.popParams['E_delay'] = {'cellType':'E_delay',
'numCells': 5,
'cellModel': 'E_delay',
'xRange' : [150,350],
'yRange' : [150,350],
'zRange' : [300,400] }
# Single Spike Pop (Excitatory)
netParams.popParams['E_single'] = {'cellType':'E_single',
'numCells': 3,
'cellModel': 'E_single',
'xRange' : [150,350],
'yRange' : [150,350],
'zRange' : [300,400] }
# Tonic Spike Pop (Excitatory)
netParams.popParams['E_tonic'] = {'cellType':'E_tonic',
'numCells': 2,
'cellModel': 'E_tonic',
'xRange' : [150,350],
'yRange' : [150,350],
'zRange' : [300,400]}
# Spinal Projection Neurons
netParams.popParams['PROJ'] = {'cellType':'E_delay',
'numCells': 5,
'cellModel': 'E_delay',
'xRange' : [150,350],
'yRange' : [150,350],
'zRange' : [400,500] }
###############################################################################
# SYNAPTIC PARAMETERS
###############################################################################
## Synaptic mechanism parameters
netParams.synMechParams['AMPA'] = {'mod': 'Exp2Syn', 'tau1': 0.1, 'tau2': 1.0, 'e': 0}
netParams.synMechParams['GABA'] = {'mod': 'Exp2Syn', 'tau1': 1.0, 'tau2': 20.0, 'e': -80}
###############################################################################
# CONNECTIVITY PARAMETERS
###############################################################################
#------------------------PAN2E Connections -----------------------#
netParams.connParams['PAN->E'] = {
'preConds': {'pop': 'PAN'}, 'postConds': {'pop': ['E_delay','E_single','E_tonic']},
'probability': 0.2, # probability of connection
'weight': 0.04, # synaptic weight
'delay': 5, # transmission delay (ms)
'synMech': 'AMPA'} # synaptic mechanism
#------------------------PAN2I Connections -----------------------#
netParams.connParams['PAN->I'] = {
'preConds': {'pop': 'PAN'}, 'postConds': {'pop': ['I_tonic']},
'probability': 0.2, # probability of connection
'weight': 0.04, # synaptic weight
'delay': 5, # transmission delay (ms)
'synMech': 'AMPA'} # synaptic mechanism
#-----------------------I2E Connections -----------------------#
netParams.connParams['I->E'] = {
'preConds': {'pop': 'I_tonic'}, 'postConds': {'pop': ['E_delay','E_single','E_tonic']},
'probability': 0.5, # probability of connection
'weight': cfg.connWeight, # synaptic weight (original weight for network is 0.05 at 10 mN)
'delay': 5, # transmission delay (ms)
'synMech': 'GABA'} # synaptic mechanism
#------------------------------E2PROJ Connections -----------------------#
netParams.connParams['E->PROJ'] = {
'preConds': {'pop': ['E_delay','E_single','E_tonic']}, 'postConds': {'pop':['PROJ']},
'probability': 0.2, # probability of connection
'weight': 0.04, # synaptic weight
'delay': 5, # transmission delay (ms)
'sec': ['soma'],
'synMech': 'AMPA'}
###############################################################################
# STIMULATION PARAMETERS
###############################################################################
# Stimulation Sources:
# netParams.stimSourceParams['IClamp'] = {'type': 'IClamp',
# 'del': 500,
# 'dur': 1000,
# 'amp': 0.08}
# netParams.stimSourceParams['IClamp2'] = {'type': 'IClamp',
# 'del': 500,
# 'dur': 1000,
# 'amp': 0.5}
netParams.stimSourceParams['Mech'] = {'type': 'NetStim',
'rate' : 10,
'start': 200,
'interval': 'uniform(20,100)',
'noise': 0.5}
# Stimulation Targets:
netParams.stimTargetParams['Input->PAN'] = {'source': 'Mech', # Input --> PAN
'sec':'soma',
'loc': 0.5,
'conds': {'pop':'PAN'}}
# netParams.stimTargetParams['Input->E_delay'] = {'source': 'IClamp', # IClamp --> E_delay
# 'sec':'soma',
# 'loc': 0.5,
# 'conds': {'pop':'E_delay'}}
# netParams.stimTargetParams['Input->E_single'] = {'source': 'IClamp2', # IClamp2 --> E_single
# 'sec':'soma',
# 'loc': 0.5,
# 'conds': {'pop':'E_single'}}
# netParams.stimTargetParams['Input->E_tonic'] = {'source': 'IClamp', # IClamp --> E_tonic
# 'sec':'soma',
# 'loc': 0.5,
# 'conds': {'pop':'E_tonic'}}
# netParams.stimTargetParams['Input->I_tonic'] = {'source': 'IClamp', # IClamp --> I_tonic
# 'sec':'soma',
# 'loc': 0.5,
# 'conds': {'pop':'I_tonic'}}