-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitnessFunc.py
81 lines (59 loc) · 2.59 KB
/
fitnessFunc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
## Calculate the fitness of a solution (based on .json file)
from statistics import median, mean
import json
import pandas as pd
with open('data_batch/mech-CandF-Rescale.json', 'rb') as mechData: mechData = json.load(mechData)
fitnessData = mechData['simData']
def fitnessFunc(simData, **kwargs):
PRO1 = []
PRO2 = []
PRO3 = []
PRO4 = []
PRO5 = []
for i in range(399, 409): # spikes of projection neurons for network 01 (50 mN)
spkt01_ = len([spkt for spkt, spkid in zip(simData['spkt'], simData['spkid']) if spkid == i])
PRO1.append(spkt01_)
for i in range(808, 818): # spikes of projection neurons for network 02 (100 mN)
spkt23_ = len([spkt for spkt, spkid in zip(simData['spkt'], simData['spkid']) if spkid == i])
PRO2.append(spkt23_)
for i in range(1217, 1227): # spikes of projection neurons for network 03 (200 mN)
spkt45_ = len([spkt for spkt, spkid in zip(simData['spkt'], simData['spkid']) if spkid == i])
PRO3.append(spkt45_)
for i in range(1626, 1636): # spikes of projection neurons for network 04 (10 mN)
spkt67_ = len([spkt for spkt, spkid in zip(simData['spkt'], simData['spkid']) if spkid == i])
PRO4.append(spkt67_)
for i in range(2035, 2045): # spikes of projection neurons for network 05 (25 mN)
spkt89_ = len([spkt for spkt, spkid in zip(simData['spkt'], simData['spkid']) if spkid == i])
PRO5.append(spkt89_)
if PRO1 == []:PRO1.append(0)
if PRO2 == []:PRO2.append(0)
if PRO3 == []:PRO3.append(0)
if PRO4 == []:PRO4.append(0)
if PRO5 == []:PRO5.append(0)
# Firing Rate (total # of spikes / 5 seconds):
numSec = 5 # sim length (s)
PRO1s = [x/numSec for x in PRO1]
PRO2s = [x/numSec for x in PRO2]
PRO3s = [x/numSec for x in PRO3]
PRO4s = [x/numSec for x in PRO4]
PRO5s = [x/numSec for x in PRO5]
# Median Firing Rate:
med_PRO1 = median(PRO1s)
med_PRO2 = median(PRO2s)
med_PRO3 = median(PRO3s)
med_PRO4 = median(PRO4s)
med_PRO5 = median(PRO5s)
if med_PRO1 == 0 or med_PRO2 == 0 or med_PRO3 == 0:
fitness = 10000
else:
fitness = abs((1.63 - med_PRO1)/1.63) + abs((5.46 - med_PRO2)/5.46) + abs((9.70 - med_PRO3)/9.70) + abs(0 - med_PRO4) + abs(0 - med_PRO5)
return PRO1s, PRO2s, PRO3s, PRO4s, PRO5s, fitness
# Fitness of
fitness = fitnessFunc(fitnessData)
# Print results:
print('fitness =',fitness[5])
# print('Median =',fitness[0])
# print('Mean =',fitness[5])
# print('Median (100mN) =',fitness[1])
# print('Median (200mN) =',fitness[2])
# print('Median (10mN) =',fitness[3])