-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathword_vectors_loader.py
62 lines (49 loc) · 1.42 KB
/
word_vectors_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# coding:utf-8
import sys
import struct
import math
import numpy as np
reload(sys)
sys.setdefaultencoding( "utf-8" )
max_w = 50
float_size = 4
def load_vectors(input):
print "begin load vectors"
input_file = open(input, "rb")
# 获取词表数目及向量维度
words_and_size = input_file.readline()
words_and_size = words_and_size.strip()
words = long(words_and_size.split(' ')[0])
size = long(words_and_size.split(' ')[1])
print "words =", words
print "size =", size
word_vector = {}
for b in range(0, words):
a = 0
word = ''
# 读取一个词
while True:
c = input_file.read(1)
word = word + c
if False == c or c == ' ':
break
if a < max_w and c != '\n':
a = a + 1
word = word.strip()
# 读取词向量
vector = np.empty([200])
for index in range(0, size):
m = input_file.read(float_size)
(weight,) = struct.unpack('f', m)
vector[index] = weight
# 将词及其对应的向量存到dict中
word_vector[word.decode('utf-8')] = vector
input_file.close()
print "load vectors finish"
return word_vector
if __name__ == '__main__':
if 2 != len(sys.argv):
print "Usage: ", sys.argv[0], "vectors.bin"
sys.exit(-1)
d = load_vectors(sys.argv[1])
print d[u'真的']