-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path07_model_variable_selection.R
446 lines (395 loc) · 17.5 KB
/
07_model_variable_selection.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
## ----download_data, warning=FALSE, message=FALSE---------------------------
## Load the container package for this type of data
library("SummarizedExperiment")
## Connect to ExperimentHub
library("ExperimentHub")
eh <- ExperimentHub::ExperimentHub()
## Load the datasets of the package
myfiles <- query(eh, "smokingMouse")
## Download the mouse gene data
rse_gene <- myfiles[["EH8313"]]
## Keep samples from nicotine experiment and pups only
rse_gene_nic <- rse_gene[
,
which(rse_gene$Expt == "Nicotine" & rse_gene$Age == "Pup")
]
## Use expressed genes only (i.e. that passed the filtering step)
rse_gene_filt <- rse_gene_nic[
rowData(rse_gene_nic)$retained_after_feature_filtering,
]
## Keep samples that passed QC and manual sample filtering steps (all passed)
rse_gene_filt <- rse_gene_filt[
,
rse_gene_filt$retained_after_QC_sample_filtering &
rse_gene_filt$retained_after_manual_sample_filtering
]
## ----CCA, message=FALSE, warning=FALSE-------------------------------------
library("variancePartition")
library("pheatmap")
## Plot heatmap of correlations
## Define all variables to examine; remove those with single values
formula <- ~ Group + Sex + plate + flowcell + mitoRate + overallMapRate + totalAssignedGene + rRNA_rate + sum + detected + ERCCsumLogErr
## Measure correlations
CCA <- canCorPairs(formula, colData(rse_gene_filt))
## Heatmap
pheatmap(
CCA, ## data
color = hcl.colors(50, "YlOrRd", rev = TRUE), ## color scale
fontsize = 8, ## text size
border_color = "black", ## border color for heatmap cells
cellwidth = unit(0.4, "cm"), ## height of cells
cellheight = unit(0.4, "cm") ## width of cells
)
## ----message=FALSE, warning=FALSE------------------------------------------
library("ggplot2")
library("cowplot")
## Boxplots/Scatterplots/Barplots for each pair of correlated variables
corr_plots <- function(sample_var1, sample_var2, sample_color) {
## Define sample colors by variable
colors <- list(
"Group" = c("Control" = "brown2", "Experimental" = "deepskyblue3"),
"Sex" = c("F" = "hotpink1", "M" = "dodgerblue"),
"plate" = c("Plate1" = "darkorange", "Plate2" = "lightskyblue", "Plate3" = "deeppink1"),
"flowcell" = c(
"HKCG7DSXX" = "chartreuse2", "HKCMHDSXX" = "magenta",
"HKCNKDSXX" = "turquoise3", "HKCTMDSXX" = "tomato"
)
)
data <- colData(rse_gene_filt)
## a) Barplots for categorical variable vs categorical variable
if (class(data[, sample_var1]) == "character" & class(data[, sample_var2]) == "character") {
## y-axis label
y_label <- paste("Number of samples from each ", sample_var2, sep = "")
## Stacked barplot with counts for 2nd variable
plot <- ggplot(data = as.data.frame(data), aes(
x = !!rlang::sym(sample_var1),
fill = !!rlang::sym(sample_var2)
)) +
geom_bar(position = "stack") +
## Colors by 2nd variable
scale_fill_manual(values = colors[[sample_var2]]) +
## Show sample counts on stacked bars
geom_text(aes(label = after_stat(count)),
stat = "count",
position = position_stack(vjust = 0.5), colour = "gray20", size = 3
) +
theme_bw() +
labs(
subtitle = paste0("Corr: ", signif(CCA[sample_var1, sample_var2], digits = 3)),
y = y_label
) +
theme(
axis.title = element_text(size = (7)),
axis.text = element_text(size = (6)),
plot.subtitle = element_text(size = 7, color = "gray40"),
legend.text = element_text(size = 6),
legend.title = element_text(size = 7)
)
}
## b) Boxplots for categorical variable vs continuous variable
else if (class(data[, sample_var1]) == "character" & class(data[, sample_var2]) == "numeric") {
plot <- ggplot(data = as.data.frame(data), mapping = aes(
x = !!rlang::sym(sample_var1),
y = !!rlang::sym(sample_var2),
color = !!rlang::sym(sample_var1)
)) +
geom_boxplot(size = 0.25, width = 0.32, color = "black", outlier.color = NA) +
geom_jitter(width = 0.15, alpha = 1, size = 1.5) +
stat_smooth(method = "lm", geom = "line", alpha = 0.6, size = 0.4, span = 0.3, aes(group = 1), color = "orangered3") +
scale_color_manual(values = colors[[sample_var1]]) +
theme_bw() +
guides(color = "none") +
labs(
subtitle = paste0("Corr: ", signif(CCA[sample_var1, sample_var2], digits = 3)), y = gsub("_", " ", sample_var2),
x = sample_var1
) +
theme(
axis.title = element_text(size = (7)),
axis.text = element_text(size = (6)),
plot.subtitle = element_text(size = 7, color = "gray40"),
legend.text = element_text(size = 6),
legend.title = element_text(size = 7)
)
}
## c) Scatterplots for continuous variable vs continuous variable
else if (class(data[, sample_var1]) == "numeric" & class(data[, sample_var2]) == "numeric") {
plot <- ggplot(as.data.frame(data), aes(
x = !!rlang::sym(sample_var1),
y = !!rlang::sym(sample_var2),
color = !!rlang::sym(sample_color)
)) +
geom_point(size = 2) +
stat_smooth(method = "lm", geom = "line", alpha = 0.6, size = 0.6, span = 0.25, color = "orangered3") +
## Color by sample_color variable
scale_color_manual(name = sample_color, values = colors[[sample_color]]) +
theme_bw() +
labs(
subtitle = paste0("Corr: ", signif(CCA[sample_var1, sample_var2], digits = 3)),
y = gsub("_", " ", sample_var2),
x = gsub("_", " ", sample_var1)
) +
theme(
axis.title = element_text(size = (7)),
axis.text = element_text(size = (6)),
plot.subtitle = element_text(size = 7, color = "gray40"),
legend.text = element_text(size = 6),
legend.title = element_text(size = 7)
)
}
return(plot)
}
## ----message=FALSE, warning=FALSE------------------------------------------
## Correlation plot for Group and plate
p <- corr_plots("Group", "plate", NULL)
p + theme(plot.margin = unit(c(1, 5.5, 1, 5.5), "cm"))
## ----message=FALSE, warning=FALSE------------------------------------------
## Correlation plot for overallMapRate and rRNA_rate
p <- corr_plots("overallMapRate", "rRNA_rate", "Group")
p + theme(plot.margin = unit(c(2, 3.5, 2, 3.5), "cm"))
## ----message=FALSE, warning=FALSE------------------------------------------
## Correlation plot for overallMapRate and plate
p <- corr_plots("plate", "overallMapRate", NULL)
p + theme(plot.margin = unit(c(2, 5, 2, 5), "cm"))
## ----message=FALSE, warning=FALSE------------------------------------------
## Correlation plot for overallMapRate and flowcell
p <- corr_plots("flowcell", "overallMapRate", NULL)
p + theme(plot.margin = unit(c(2, 5, 2, 5), "cm"))
## ----message=FALSE, warning=FALSE------------------------------------------
## Correlation plots for sum and detected
p <- corr_plots("sum", "detected", "Group")
p + theme(plot.margin = unit(c(2, 3.5, 2, 3.5), "cm"))
## ----message=FALSE, warning=FALSE------------------------------------------
p <- corr_plots("Group", "flowcell", NULL)
plots <- plot_grid(p)
plots + theme(plot.margin = unit(c(0.5, 5, 0.5, 5), "cm"))
## ----message=FALSE, warning=FALSE, eval=FALSE------------------------------
## ## Fit a linear mixed model (LMM) that takes continuous variables as fixed effects and categorical variables as random effects
##
## varPartAnalysis <- function(formula) {
## ## Ignore genes with variance 0
## genes_var_zero <- which(apply(assays(rse_gene_filt)$logcounts, 1, var) == 0)
## if (length(genes_var_zero) > 0) {
## rse_gene_filt <- rse_gene_filt[-genes_var_zero, ]
## }
##
## ## Loop over each gene to fit the model and extract variance explained by each variable
## varPart <- fitExtractVarPartModel(assays(rse_gene_filt)$logcounts, formula, colData(rse_gene_filt))
##
## # Sort variables by median fraction of variance explained (FVE)
## vp <- sortCols(varPart)
## p <- plotVarPart(vp)
##
## return(list(p, vp))
## }
## ----message=FALSE, warning=FALSE, eval=FALSE------------------------------
## ##### Fit model with all variables #####
##
## # sum, detected, and ERCCsumLogErr are not included as they are in very different scales!
## formula <- ~ (1 | Group) + (1 | Sex) + (1 | plate) + (1 | flowcell) + mitoRate + overallMapRate +
## totalAssignedGene + rRNA_rate
## plot <- varPartAnalysis(formula)[[1]]
## plot + theme(
## plot.margin = unit(c(1, 1, 1, 1), "cm"),
## axis.text.x = element_text(size = (7)),
## axis.text.y = element_text(size = (7.5))
## )
## ----message=FALSE, warning=FALSE, eval=FALSE------------------------------
## ##### Fit model without correlated variables #####
##
## ## Pup plots without overallMapRate and plate
## formula <- ~ (1 | Group) + (1 | Sex) + (1 | flowcell) + mitoRate + overallMapRate + totalAssignedGene
## varPart <- varPartAnalysis(formula)
## varPart_data <- varPart[[2]]
## plot <- varPart[[1]]
## plot + theme(
## plot.margin = unit(c(1, 1, 1, 1), "cm"),
## axis.text.x = element_text(size = (7)),
## axis.text.y = element_text(size = (7.5))
## )
## ----message=FALSE, warning=FALSE, eval=FALSE------------------------------
## library("rlang")
##
## ## Plot of gene expression lognorm counts vs. sample variable
## plot_gene_expr <- function(sample_var, gene_id) {
## colors <- list(
## "Group" = c("Control" = "brown2", "Experimental" = "deepskyblue3"),
## "Age" = c("Adult" = "slateblue3", "Pup" = "yellow3"),
## "Sex" = c("F" = "hotpink1", "M" = "dodgerblue"),
## "Pregnancy" = c("Yes" = "darkorchid3", "No" = "darkolivegreen4"),
## "plate" = c("Plate1" = "darkorange", "Plate2" = "lightskyblue", "Plate3" = "deeppink1"),
## "flowcell" = c(
## "HKCG7DSXX" = "chartreuse2", "HKCMHDSXX" = "magenta", "HKCNKDSXX" = "turquoise3",
## "HKCTMDSXX" = "tomato"
## )
## )
##
## ## Lognorm counts of the gene across samples
## data <- colData(rse_gene_filt)
## data$gene_expr <- assays(rse_gene_filt)$logcounts[gene_id, ]
##
## ## Percentage of variance explained by the variable
## percentage <- 100 * signif(varPart_data[gene_id, sample_var], digits = 3)
##
## ## Boxplots for categorical variables
## if (class(data[, sample_var]) == "character") {
## plot <- ggplot(data = as.data.frame(data), mapping = aes(
## x = !!rlang::sym(sample_var),
## y = gene_expr, color = !!rlang::sym(sample_var)
## )) +
## geom_boxplot(size = 0.25, width = 0.32, color = "black", outlier.color = "#FFFFFFFF") +
## geom_jitter(width = 0.15, alpha = 1, size = 1) +
## stat_smooth(geom = "line", alpha = 0.6, size = 0.4, span = 0.3, method = "lm", aes(group = 1), color = "orangered3") +
## scale_color_manual(values = colors[[sample_var]]) +
## theme_bw() +
## guides(color = "none") +
## labs(
## title = gene_id,
## subtitle = paste0("Variance explained: ", percentage, "%"),
## y = "lognorm counts", x = sample_var
## ) +
## theme(
## axis.title = element_text(size = (7)),
## axis.text = element_text(size = (6)),
## plot.title = element_text(hjust = 0.5, size = 7.5, face = "bold"),
## plot.subtitle = element_text(size = 7, color = "gray40"),
## legend.text = element_text(size = 6),
## legend.title = element_text(size = 7)
## )
## }
##
## ## Scatterplots for continuous variables
## else {
## colors <- c(
## "mitoRate" = "khaki3", "overallMapRate" = "turquoise", "totalAssignedGene" = "plum2", "rRNA_rate" = "orange3",
## "sum" = "palegreen3", "detected" = "skyblue2", "ERCCsumLogErr" = "slateblue1"
## )
##
## plot <- ggplot(as.data.frame(data), aes(x = eval(parse_expr(sample_var)), y = gene_expr)) +
## geom_point(color = colors[[sample_var]], size = 2) +
## stat_smooth(geom = "line", alpha = 0.4, size = 0.4, span = 0.25, method = "lm", color = "orangered3") +
## theme_bw() +
## guides(color = "none") +
## labs(
## title = gene_id,
## subtitle = paste0("Variance explained: ", percentage, "%"),
## y = "lognorm counts", x = gsub("_", " ", sample_var)
## ) +
## theme(
## plot.margin = unit(c(0.4, 0.1, 0.4, 0.1), "cm"),
## axis.title = element_text(size = (7)),
## axis.text = element_text(size = (6)),
## plot.title = element_text(hjust = 0.5, size = 7.5, face = "bold"),
## plot.subtitle = element_text(size = 7, color = "gray40"),
## legend.text = element_text(size = 6),
## legend.title = element_text(size = 7)
## )
## }
##
## return(plot)
## }
## ----message=FALSE, warning=FALSE, eval=FALSE------------------------------
## ## Function to plot gene expression vs sample variable data for top 3 most affected genes
##
## plot_gene_expr_sample <- function(sample_var) {
## ## Top 3 genes most affected by sample variable
## affected_genes <- rownames(varPart_data[order(varPart_data[, sample_var], decreasing = TRUE), ][1:3, ])
##
## ## Plots
## plots <- list()
## for (i in 1:length(affected_genes)) {
## plots[[i]] <- plot_gene_expr(sample_var, affected_genes[i])
## }
## plot_grid(plots[[1]], plots[[2]], plots[[3]], ncol = 3)
## }
## ----message=FALSE, warning=FALSE, eval=FALSE------------------------------
## ## Plots for top affected genes by 'overallMapRate'
## plots <- plot_gene_expr_sample("overallMapRate")
## plots + theme(plot.margin = unit(c(3, 1, 2, 3), "cm"))
##
## ## Plots for top affected genes by 'totalAssignedGene'
## plots <- plot_gene_expr_sample("totalAssignedGene")
## plots + theme(plot.margin = unit(c(3, 1, 2, 3), "cm"))
##
## ## Plots for top affected genes by 'Group'
## plots <- plot_gene_expr_sample("Group")
## plots + theme(plot.margin = unit(c(3, 1, 2, 3), "cm"))
##
## ## Plots for top affected genes by 'Sex' (genes in sexual chrs)
## plots <- plot_gene_expr_sample("Sex")
## plots + theme(plot.margin = unit(c(3, 1, 2, 3), "cm"))
## ----exercise1_varPart, message=FALSE, warning=FALSE, echo=FALSE, eval=FALSE----
## ## Solution
##
## ## Gene ID
## gene_id <- "ENSMUSG00000042348.10"
## ## % of variance explained by Group
## percentage <- 100 * signif(varPart_data[gene_id, "Group"], digits = 3)
## ## Sample colors
## colors <- c("Control" = "brown2", "Experimental" = "deepskyblue3")
## ## Gene expression logcounts
## rse_gene_filt$gene_expr <- assays(rse_gene_filt)$logcounts[gene_id, ]
##
## ## Plot
## plot <- ggplot(
## data = as.data.frame(colData(rse_gene_filt)),
## mapping = aes(x = Group, y = gene_expr, color = Group)
## ) +
## geom_boxplot(size = 0.25, width = 0.32, color = "black", outlier.color = "#FFFFFFFF") +
## geom_jitter(width = 0.15, alpha = 1, size = 1) +
## scale_color_manual(values = colors) +
## theme_bw() +
## guides(color = "none") +
## labs(
## title = gene_id,
## subtitle = paste0("Variance explained: ", percentage, "%"),
## y = "lognorm counts"
## ) +
## theme(
## plot.margin = unit(c(2, 6, 2, 6), "cm"),
## axis.title = element_text(size = (7)),
## axis.text = element_text(size = (6)),
## plot.title = element_text(hjust = 0.5, size = 7.5, face = "bold"),
## plot.subtitle = element_text(size = 7, color = "gray40"),
## legend.text = element_text(size = 6),
## legend.title = element_text(size = 7)
## )
##
## plot
## ----exercise2_varPart, message=FALSE, warning=FALSE, echo=FALSE, eval=FALSE----
## ## Solution
##
## ## Gene ID
## gene_id <- "ENSMUSG00000064372.1"
## ## % of variance explained by Group
## percentage <- 100 * signif(varPart_data[gene_id, "Group"], digits = 3)
## ## Sample colors
## colors <- c("Control" = "brown2", "Experimental" = "deepskyblue3")
## ## Gene expression logcounts
## rse_gene_filt$gene_expr <- assays(rse_gene_filt)$logcounts[gene_id, ]
##
## ## Plot
## plot <- ggplot(
## data = as.data.frame(colData(rse_gene_filt)),
## mapping = aes(x = Group, y = gene_expr, color = Group)
## ) +
## geom_boxplot(size = 0.25, width = 0.32, color = "black", outlier.color = "#FFFFFFFF") +
## geom_jitter(width = 0.15, alpha = 1, size = 1) +
## scale_color_manual(values = colors) +
## theme_bw() +
## guides(color = "none") +
## labs(
## title = gene_id,
## subtitle = paste0("Variance explained: ", percentage, "%"),
## y = "lognorm counts"
## ) +
## theme(
## plot.margin = unit(c(2, 6, 2, 6), "cm"),
## axis.title = element_text(size = (7)),
## axis.text = element_text(size = (6)),
## plot.title = element_text(hjust = 0.5, size = 7.5, face = "bold"),
## plot.subtitle = element_text(size = 7, color = "gray40"),
## legend.text = element_text(size = 6),
## legend.title = element_text(size = 7)
## )
##
## plot