-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.xml
5812 lines (5670 loc) · 654 KB
/
index.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>Linked Data Benchmark Council</title>
<link>https://ldbcouncil.org/</link>
<description>Recent content on Linked Data Benchmark Council</description>
<generator>Hugo -- gohugo.io</generator>
<language>en-us</language>
<lastBuildDate>Fri, 30 Aug 2024 09:00:00 -0800</lastBuildDate><atom:link href="https://ldbcouncil.org/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>Eighteenth TUC Meeting</title>
<link>https://ldbcouncil.org/event/eighteenth-tuc-meeting/</link>
<pubDate>Fri, 30 Aug 2024 09:00:00 -0800</pubDate>
<guid>https://ldbcouncil.org/event/eighteenth-tuc-meeting/</guid>
<description><p><strong>Organizers:</strong> Shipeng Qi, Wenyuan Yu (Alibaba Damo), Yan Zhou (CreateLink)</p>
<p>LDBC is hosting a <strong>two-day</strong> hybrid workshop, co-located in <strong>Guangzhou</strong> with <a href="https://vldb.org/2024/">VLDB 2024</a> on <strong>August 30-31 (Friday-Saturday)</strong>.</p>
<p>The program consists of 10- and 15-minute talks followed by a Q&amp;A session. The talks will be recorded and made available<br>
online. <strong>If you would like to participate please register using <a href="https://forms.gle/aVPrrcxXpSwrWPnh6">our form</a>.</strong></p>
<p>LDBC will host a <strong>social event</strong> on Friday at the <a href="https://www.marriott.com/en-us/hotels/canwi-the-westin-pazhou/overview/">3F Xingang Room, the Westin Pazhou,<br>
Guangzhou</a>. The address is <a href="https://www.google.com/maps/search/?api=1&amp;query=23.09611%2C113.363612&amp;hl=en-US">Area C, Canton Fair Complex, 681 Fengpu Zhong Rd., Haizhu District, Guangzhou, Guangdong</a></p>
<p>In addition, Ant Group, Alibaba Damo, and CreateLink will host a <strong>Happy Hour</strong> on Saturday. Join us by the Pearl River at the Vino Restaurant, located on the <a href="https://www.google.com/maps/place/Pati+Beer+Cultural+Art+Area/@23.10676,113.3395851,17z/data=!3m1!4b1!4m6!3m5!1s0x3402ff9921d813ff:0x47f2671cfc7a6eec!8m2!3d23.10676!4d113.34216!16s%2Fg%2F11rcyt04t8?hl=en&amp;entry=ttu">8th Floor, No. 118 Modiesha Street, Area B, Beer Culture Creative Art District, Guangzhou</a>.</p>
<h3 id="program-and-slides">Program and Slides</h3>
<p>This event is hosted in Guangzhou. Local time is <strong>CST (China Standard time) on the first column</strong>. <strong>CEST (Central European Standard time) on the third column</strong> and <strong>PDT (Pacific Daylight time) on the forth column</strong> are listed in addition for the participants in European and Pacific timezone.</p>
<h4 id="august-30-friday">August 30, Friday</h4>
<p><strong>Location:</strong> <a href="https://www.langhamhotels.com/en/the-langham/guangzhou/">Langham Place</a>, Guangzhou, <strong>room 1</strong>,<br>
co-located with VLDB (N0.630-638 Xingang Dong Road, Haizhu District, Guangzhou, China). See the map <a href="https://maps.app.goo.gl/86jD3Dy9Aa7bwLs36">here</a>.</p>
<table>
<thead>
<tr>
<th>CST Start</th>
<th>CST End</th>
<th>CEST Start</th>
<th>PDT Start</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>09:20</td>
<td>03:00</td>
<td>18:00</td>
<td>Alastair Green (LDBC)</td>
<td>State of the Union - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/1.%20LDBC%20_State%20of%20the%20Union_%20--%2018th%20TUC,%20Guangzhou,%202024-08-30%20Alastair%20Green.pdf">slides</a> -<a href="https://youtu.be/I0R72mAKQMQ">video</a></td>
</tr>
<tr>
<td>09:20</td>
<td>09:40</td>
<td>03:20</td>
<td>18:20</td>
<td>Lei Zou (Peking University)</td>
<td>Unified Graph Query Plan Representation and Optimization - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/2.%20Unified%20Graph%20Query%20Plan%20Representation%20and%20Optimization.pdf">slides</a> -<a href="https://youtu.be/fzsQ--DW49k">video</a></td>
</tr>
<tr>
<td>09:40</td>
<td>10:00</td>
<td>03:40</td>
<td>18:40</td>
<td>Wei Wang (East China Normal University)</td>
<td>From OpenRank to OpenPerf: Enhancing Open-Source Ecosystem Insights with Graph-Based Approaches - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/3.%20From%20OpenRank%20to%20OpenPerf.pdf">slides</a> -<a href="https://youtu.be/XKGJ0VPtadg">video</a></td>
</tr>
<tr>
<td>10:00</td>
<td>10:20</td>
<td>04:00</td>
<td>19:00</td>
<td>coffee break</td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>10:40</td>
<td>04:20</td>
<td>19:20</td>
<td>Keith W. Hare (JCC / WG3)</td>
<td>The GQL Standard is Published! Now what? - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/4.%20GQL%20standard%20is%20published%202024-08-30.pdf">slides</a> -<a href="https://youtu.be/RoebDzkbn9c">video</a></td>
</tr>
<tr>
<td>10:40</td>
<td>11:10</td>
<td>04:40</td>
<td>19:40</td>
<td>Michael Burbidge (LDBC), co-present with <br>Alessio Stalla, Federico Tomassetti, Tracey Walsh</td>
<td>The LDBC GQL Implementation Working Group mission and progress - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/5.%20GQL%20Implementation%20WG.pdf">slides</a> -<a href="https://youtu.be/WTT6X7zQisg">video</a></td>
</tr>
<tr>
<td>11:10</td>
<td>11:30</td>
<td>05:10</td>
<td>20:10</td>
<td>Oskar Van Rest (Oracle)</td>
<td>The SQL/PGQ Standard: SQL support for property graphs - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/6.%20PGQ%20Standard%20final.pdf">slides</a> -<a href="https://youtu.be/wvXm0wgkrF8">video</a></td>
</tr>
<tr>
<td>11:30</td>
<td>12:00</td>
<td>05:30</td>
<td>20:30</td>
<td>Peter Boncz (CWI / LDBC)</td>
<td>The state of DuckPGQ - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/7.%20The%20State%20of%20DuckPGQ.pdf">slides</a> -<a href="https://youtu.be/ZlXu0UM2LUw">video</a></td>
</tr>
<tr>
<td>12:00</td>
<td>13:00</td>
<td>06:00</td>
<td>21:00</td>
<td>lunch at Langham hotel</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>13:20</td>
<td>07:00</td>
<td>22:00</td>
<td>Xuntao Cheng (vesoft)</td>
<td>GQL and its implementation - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/8.%20GQL_talk_Xuntao_Cheng.pdf">slides</a> -<a href="https://youtu.be/XsRxw06B-jY">video</a></td>
</tr>
<tr>
<td>13:20</td>
<td>13:40</td>
<td>07:20</td>
<td>22:20</td>
<td>Alastair Green (JCC / LDBC)</td>
<td>LEX: The future of Graph Schema - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/9.%20LEX-074%20LEX%20LDBC%2018th%20LDBC%20TUC%20%20%2030%20August%202024.pdf">slides</a> -<a href="https://youtu.be/txskwX2DwxA">video</a></td>
</tr>
<tr>
<td>13:40</td>
<td>14:00</td>
<td>07:40</td>
<td>22:40</td>
<td>Valerio Malenchino (Neo4j)</td>
<td>OpenCypher, a path to GQL. – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/10.%20openCypher,%20a%20path%20to%20GQL.pdf">slides</a> -<a href="https://youtu.be/qm7ViOYfwgY">video</a></td>
</tr>
<tr>
<td>14:00</td>
<td>14:55</td>
<td>08:00</td>
<td>23:00</td>
<td>Host: Alastair Green (JCC / LDBC), panelists: Peter Boncz (CWI / LDBC), Chuntao Hong (AntGroup), Mingxi Wu (TigerGraph), Xuntao Cheng(vesoft)</td>
<td>ISO GQL Panel - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/11.%20Panel%20questions.pdf">slides</a> -<a href="https://youtu.be/qVcQYYbx71g">video</a></td>
</tr>
<tr>
<td>14:55</td>
<td>15:15</td>
<td>08:55</td>
<td>23:55</td>
<td>coffee break</td>
<td></td>
</tr>
<tr>
<td>15:15</td>
<td>15:35</td>
<td>09:15</td>
<td>00:15</td>
<td>Shixuan Sun (Shanghai Jiao Tong University)</td>
<td>FaaSGraph: Enabling Scalable, Efficient, and Cost-Effective Graph Processing with Serverless Computing - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/12.%20FaaSGraph-ShixuanSun-LDBC.pdf">slides</a> -<a href="https://youtu.be/c-KxJLcyzto">video</a></td>
</tr>
<tr>
<td>15:35</td>
<td>15:55</td>
<td>09:35</td>
<td>00:35</td>
<td>Cheng Chen (ByteDance)</td>
<td>BG3: A Cost Effective and I/O Efficient Graph Database in ByteDance - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/13.%20bg3-ldbc24.pdf">slides</a> -<a href="https://youtu.be/pFUbg34lvPo">video</a></td>
</tr>
<tr>
<td>15:55</td>
<td>16:15</td>
<td>09:55</td>
<td>00:55</td>
<td>Mingxi Wu (TigerGraph)</td>
<td>TigerGraph: Key Lessons from Running SNB BI Workload on Large-Scale Data Set - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/14.%20LDBC-SNB-108T-2024-Aug.pdf">slides</a> -<a href="https://youtu.be/9XiOL7fjz0k">video</a></td>
</tr>
<tr>
<td>16:15</td>
<td>16:35</td>
<td>10:15</td>
<td>01:15</td>
<td>Gabor Szarnyas (DuckDB / LDBC)</td>
<td>The LDBC benchmark suite - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/15.%20gabor-szarnyas-the-ldbc-benchmark-suite.pdf">slides</a> -<a href="https://youtu.be/j6C4G0O-bQM">video</a></td>
</tr>
<tr>
<td>16:35</td>
<td>16:55</td>
<td>10:35</td>
<td>01:35</td>
<td>Shipeng Qi (AntGroup / LDBC)</td>
<td>The LDBC Financial Benchmark - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day1/16.%20The%20LDBC%20FinBench%20v0.2.0.pdf">slides</a> -<a href="https://youtu.be/hTfK-9Toor4">video</a></td>
</tr>
<tr>
<td>16:55</td>
<td>17:40</td>
<td>10:55</td>
<td>01:55</td>
<td>In-person participants</td>
<td>LDBC Voting Members Meeting</td>
</tr>
<tr>
<td>18:00</td>
<td>22:00</td>
<td>12:00</td>
<td>03:00</td>
<td>Dinner at 3/F Xingang Room, the Westin Pazhou, Guangzhou</td>
<td></td>
</tr>
</tbody>
</table>
<h4 id="august-31-saturday">August 31, Saturday</h4>
<p><strong>Location:</strong> Alibaba Center, Guangzhou (N0.88 Dingxin Road, Haizhu District, Guangzhou, China), near to VLDB Langham Place. See the map <a href="https://maps.app.goo.gl/HgEVafZMRmrzUsgW8">here</a>.</p>
<table>
<thead>
<tr>
<th>CST Start</th>
<th>CST End</th>
<th>CEST Start</th>
<th>PDT Start</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>09:20</td>
<td>03:00</td>
<td>18:00</td>
<td>Ora Lassila (AWS Neptune)</td>
<td>Aligning RDF and LPGs: A Status Report of the OneGraph Initiative - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/1.%20onegraph-ldbc-tuc18-202408-final.pdf">slides</a> -<a href="https://youtu.be/to_dWaaX498">video</a></td>
</tr>
<tr>
<td>09:20</td>
<td>09:40</td>
<td>03:20</td>
<td>18:20</td>
<td>Xiangyu Ke (Zhejiang University)</td>
<td>View-based explanation for graph neural networks - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/2.%20GVEX-XiangyuKE.pdf">slides</a> -<a href="https://youtu.be/EgojnYfRuuw">video</a></td>
</tr>
<tr>
<td>09:40</td>
<td>10:00</td>
<td>03:40</td>
<td>18:40</td>
<td>Chengying Huan (Insitute of software, CAS)</td>
<td>Hybrid Sampling Algorithm for Dynamic Graph Sampling - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/3.%20Dynamic_sampling.pdf">slides</a> -<a href="https://youtu.be/sOuz2MYZYoI">video</a></td>
</tr>
<tr>
<td>10:00</td>
<td>10:20</td>
<td>04:00</td>
<td>19:00</td>
<td>Chen Zhang (CreateLink)</td>
<td>Parameterized Algorithm Routine: The Perfect Balance between Performance and Usability - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/4.%20TUC_Galaxybase.pdf">slides</a> -<a href="https://youtu.be/d4wPsf4pyCE">video</a></td>
</tr>
<tr>
<td>10:20</td>
<td>10:50</td>
<td>04:20</td>
<td>19:20</td>
<td>coffee break</td>
<td></td>
</tr>
<tr>
<td>10:50</td>
<td>11:10</td>
<td>04:50</td>
<td>19:50</td>
<td>Long Yuan (Nanjing University of Science and Technology)</td>
<td>Revisit benchmarking graph analytics - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/5.%20Revisiting%20Graph%20Analytics%20Benchmarks.pdf">slides</a> -<a href="https://youtu.be/9VOX3th7fV4">video</a></td>
</tr>
<tr>
<td>11:10</td>
<td>11:30</td>
<td>05:10</td>
<td>20:10</td>
<td>Longbin Lai (Alibaba Group)</td>
<td>A Graph-Native Query Optimization Framework - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/6.%20GOPT-TUC-v0.2.pdf">slides</a> -<a href="https://youtu.be/De39jeVmif8">video</a></td>
</tr>
<tr>
<td>11:30</td>
<td>11:50</td>
<td>05:30</td>
<td>20:30</td>
<td>Jingbo Xu (Alibaba Group)</td>
<td>Apache GraphAr: An Open-Source Standard File Format for Graph Data Storage and Retrieval - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/7.%20GraphAr-TUCv1.pdf">slides</a> -<a href="https://youtu.be/tGx5MUghofc">video</a></td>
</tr>
<tr>
<td>11:50</td>
<td>12:10</td>
<td>05:50</td>
<td>20:50</td>
<td>Sijie Shen (Alibaba Group)</td>
<td>Introducing GART: Real-Time Online Graph Data Analysis for SQL - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/8.%20GART.pdf">slides</a> -<a href="https://youtu.be/pMVUc72BdpQ">video</a></td>
</tr>
<tr>
<td>12:10</td>
<td>13:30</td>
<td>06:10</td>
<td>21:10</td>
<td>lunch at Alibaba Center</td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>13:50</td>
<td>07:30</td>
<td>22:30</td>
<td>Atanas Kiryakov (OntoText)</td>
<td>Graph RAG Varieties - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/9.%20Graph%20RAG%20Varieties%20-%20LDBC.pdf">slides</a> -<a href="https://youtu.be/dFyPlllOm1s">video</a></td>
</tr>
<tr>
<td>14:10</td>
<td>14:30</td>
<td>08:10</td>
<td>23:10</td>
<td>Boci Peng (AntGroup)</td>
<td>Subgraph Retrieval Enhanced by Graph-Text Alignment for Commonsense Question Answering - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/11.%20SEPTA_tuc_pbc.pdf">slides</a> -<a href="https://youtu.be/hZwkbLoOcUA">video</a></td>
</tr>
<tr>
<td>14:30</td>
<td>14:50</td>
<td>08:30</td>
<td>23:30</td>
<td>Damien Hilloulin (Oracle Labs)</td>
<td>Graphs, Graph-RAG, and LLMs: An Introduction - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/12.%202024-08-31-GraphsGraph-RAGsandLLMsAnIntroduction-tuc.pdf">slides</a> -<a href="https://youtu.be/ENCso_xlNgQ">video</a></td>
</tr>
<tr>
<td>14:50</td>
<td>15:20</td>
<td>08:50</td>
<td>23:50</td>
<td>coffee break</td>
<td></td>
</tr>
<tr>
<td>15:20</td>
<td>15:50</td>
<td>09:20</td>
<td>00:20</td>
<td>Xiyang (Kuzu Inc.)</td>
<td>Progress and Roadmap of the Kuzu Graph DBMS - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/13.%20Kuzu%20TUC%20Meeting%20Aug%202024.pdf">slides</a> -<a href="https://youtu.be/m7cSJRa__t4">video</a></td>
</tr>
<tr>
<td>15:50</td>
<td>16:10</td>
<td>09:50</td>
<td>00:50</td>
<td>Ricky Sun (Ultipa)</td>
<td>A Graph Analytics Supercharge Case Study of GPU vs. CPU on Performance, Greenness and Cost - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/14.%20A%20Graph%20Analytics%20Supercharge%20Case%20Study%20of%20CPU%20vs.%20GPU%20on%20Performance,%20Cost%20and%20ESG%20v2.pdf">slides</a> -<a href="https://youtu.be/ay_4SAY_PPo">video</a></td>
</tr>
<tr>
<td>16:10</td>
<td>16:30</td>
<td>10:10</td>
<td>01:10</td>
<td>Min Wu (Fabarta)</td>
<td>ArcNeural: A Multi-Modal Database for the Gen-AI Era - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/15.%20Fabarta.pdf">slides</a> -<a href="https://youtu.be/opmyhgkIYok">video</a></td>
</tr>
<tr>
<td>16:30</td>
<td>16:50</td>
<td>10:30</td>
<td>01:30</td>
<td>Juan Yang (StarGraph)</td>
<td>AtlasGraph: A High-Performance Graph Database Solution for Complex Data Challenges - <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/eighteenth-tuc-meeting/day2/16.%20StarGraph%202024%20VLDB%202024-08-31.pdf">slides</a> -<a href="https://youtu.be/iF7KFref9Rs">video</a></td>
</tr>
<tr>
<td>18:00</td>
<td>22:00</td>
<td>12:00</td>
<td>03:00</td>
<td>Happy Hour sponsored by AntGroup, Alibaba Damo, CreateLink</td>
<td></td>
</tr>
</tbody>
</table>
<h4 id="tuc-event-locations">TUC event locations</h4>
<p>A <a href="https://www.google.com/maps/d/u/0/edit?mid=19_fi4fV-3-PZkNWCCcmhU86ct2EZXbgo">map of the LDBC TUC events</a> we hosted so far.</p>
</description>
</item>
<item>
<title>Seventeenth TUC Meeting</title>
<link>https://ldbcouncil.org/event/seventeenth-tuc-meeting/</link>
<pubDate>Sun, 09 Jun 2024 09:00:00 -0400</pubDate>
<guid>https://ldbcouncil.org/event/seventeenth-tuc-meeting/</guid>
<description><p><strong>Organizers:</strong> Renzo Angles, Sebastián Ferrada</p>
<p>LDBC is hosting a one-day in-person workshop, co-located in <strong>Santiago de Chile</strong> with <a href="https://2024.sigmod.org/venue.shtml">SIGMOD 2024</a> on <strong>June 9 (Sunday)</strong>.</p>
<p>The workshop will be held in the <strong>Hotel Plaza El Bosque Ebro</strong> (<a href="https://www.plazaelbosque.cl">https://www.plazaelbosque.cl</a>), which is two blocks away from SIGMOD&rsquo;s venue. See the map <a href="https://maps.app.goo.gl/78oiw3zo2pH3gy5R6">here</a>.</p>
<h3 id="program">Program</h3>
<p><strong>All times are in Chile time (GMT-4).</strong></p>
<p><strong>Each speaker will have 20 minutes for exposition plus 5 minutes for questions.</strong></p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>Renzo Angles (U. Talca)</td>
<td>Welcome</td>
</tr>
<tr>
<td>09:30</td>
<td>Alastair Green (LDBC Vice-chair)</td>
<td>Status of the LDBC Extended GQL Schema Working Group</td>
</tr>
<tr>
<td>10:00</td>
<td>Hannes Voigt (Neo4j)</td>
<td>Inside the Standardization Machine Room: How ISO/IEC 39075:2024 GQL was produced - <a href="https://ldbcouncil.org/docs/tuc17th/inside.pdf">slides</a> - <a href="https://youtu.be/EpwHzPSOF3o">video</a></td>
</tr>
<tr>
<td>10:30</td>
<td>Calin Iorgulescu (Oracle)</td>
<td>PGX.D: Distributed graph processing engine</td>
</tr>
<tr>
<td>11:00</td>
<td>Coffee break</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>Ricky Sun (Ultipa, Inc.)</td>
<td>A Unified Graph Framework with SCC (Storage-Compute Coupled) and HDC (High-Density Computing) Clustering</td>
</tr>
<tr>
<td>12:00</td>
<td>Daan de Graaf (TU Eindhoven)</td>
<td>Algorithm Support in a Graph Database, Done Right - <a href="https://ldbcouncil.org/docs/tuc17th/graphalg.pdf">slides</a> - <a href="https://youtu.be/eys5wJmy2PY">video</a></td>
</tr>
<tr>
<td>12:30</td>
<td>Angela Bonifati (Lyon 1 University and IUF, France)</td>
<td>Transforming Property Graphs</td>
</tr>
<tr>
<td>13:00</td>
<td>Brunch</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Juan Sequeda (data.world)</td>
<td>A Benchmark to Understand the Role of Knowledge Graphs on Large Language Model&rsquo;s Accuracy for Question Answering on Enterprise SQL Databases - <a href="https://youtu.be/P0WoWFp1fN8">video</a></td>
</tr>
<tr>
<td>14:30</td>
<td>Olaf Hartig (Linköping University)</td>
<td>FedShop: A Benchmark for Testing the Scalability of SPARQL Federation Engines - <a href="https://ldbcouncil.org/docs/tuc17th/fedshop.pdf">slides</a> - <a href="https://youtu.be/J7rAowKmAcE">video</a></td>
</tr>
<tr>
<td>15:00</td>
<td>Olaf Hartig (Amazon)</td>
<td>Datatypes for Lists and Maps in RDF Literals</td>
</tr>
<tr>
<td>15:30</td>
<td>Peter Boncz (CWI and MotherDuck)</td>
<td>The state of DuckPGQ - <a href="https://ldbcouncil.org/docs/tuc17th/duckpgq.pdf">slides</a> - <a href="https://youtu.be/VoxV0z_XQPM">video</a></td>
</tr>
<tr>
<td>16:00</td>
<td>Coffee break</td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>Juan Reutter (IMFD and PUC Chile)</td>
<td>MillenniumDB: A Persistent, Open-Source, Graph Database</td>
</tr>
<tr>
<td>17:00</td>
<td>Carlos Rojas (IMFD)</td>
<td>WDBench: A Wikidata Graph Query Benchmark</td>
</tr>
<tr>
<td>17:30</td>
<td>Sebastián Ferrada (IMFD and Univ. de Chile)</td>
<td>An algebra for evaluating path queries</td>
</tr>
<tr>
<td>19:30</td>
<td>Dinner</td>
<td></td>
</tr>
</tbody>
</table>
</description>
</item>
<item>
<title>Record-Breaking SNB Interactive Results for GraphScope</title>
<link>https://ldbcouncil.org/post/record-breaking-snb-interactive-results-for-graphscope/</link>
<pubDate>Sun, 26 May 2024 00:00:00 +0000</pubDate>
<guid>https://ldbcouncil.org/post/record-breaking-snb-interactive-results-for-graphscope/</guid>
<description><p>We are happy to annonunce new <a href="https://ldbcouncil.org/benchmarks/snb-interactive/">audited results for the SNB Interactive workload</a>, achieved by the open-source <a href="https://github.com/alibaba/GraphScope">GraphScope Flex</a> system.</p>
<p>The current audit of the system has broken several records:</p>
<ul>
<li>It achieved 130.1k ops/s on scale factor 100, compared to the previous record of 48.8k ops/s.</li>
<li>It achieved 131.3k ops/s on scale factor 300, compared to the previous record of 48.3k ops/s.</li>
<li>It is the first system to successfully complete the benchmark on scale factor 1000. It achieved a throughput of 127.8k ops/s</li>
</ul>
<p>The audit was commissioned by the <a href="https://www.alibabacloud.com/">Alibaba Cloud</a> and was conducted by <a href="https://www.linkedin.com/in/arnau-prat-a70283bb/">Dr. Arnau Prat-Pérez</a>, one of the original authors of the SNB Interactive benchmark. The queries were implemented as C++ stored procedures and the benchmark was executed on the Alibaba Cloud&rsquo;s infrastructure. The <a href="https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_I_20240514_SF100-300-1000_graphscope-executive_summary.pdf">executive summary</a>, <a href="https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_I_20240514_SF100-300-1000_graphscope.pdf">full disclosure report</a>, and <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/audits/LDBC_SNB_I_20240514_SF100-300-1000_graphscope-attachments.tar.gz">supplementary package</a> describe the benchmark&rsquo;s steps and include instructions for reproduction.</p>
<p>LDBC would like to congratulate the GraphScope Flex team on their record-breaking results.</p>
<div align="center"><img src="https://ldbcouncil.org/images/graphscope.svg" width="200"></div>
</description>
</item>
<item>
<title>Launching open-source language tools for ISO/IEC GQL</title>
<link>https://ldbcouncil.org/post/ldbc-announces-open-source-gql-tools/</link>
<pubDate>Thu, 09 May 2024 00:00:00 +0000</pubDate>
<guid>https://ldbcouncil.org/post/ldbc-announces-open-source-gql-tools/</guid>
<description><p>Following the publication of ISO/IEC GQL (graph query language) in April 2024, LDBC today launches open-source language engineering tools to help implementers, and assist in generation of code examples and tests for the GQL language. See this <a href="https://ldbcouncil.org/pages/opengql-announce">announcement from Alastair Green, Vice-chair of LDBC</a>.</p>
<p>These tools are the work of the <strong>LDBC GQL Implementation Working Group</strong>, headed up by Michael Burbidge. Damian Wileński and Dominik Tomaszuk have worked with Michael to create these artefacts based on his ANTLR grammar for GQL.</p>
</description>
</item>
<item>
<title>Announcing the Official Release of LDBC Financial Benchmark v0.1.0</title>
<link>https://ldbcouncil.org/post/announcing-the-official-release-of-ldbc-financial-benchmark/</link>
<pubDate>Tue, 27 Jun 2023 00:00:00 +0000</pubDate>
<guid>https://ldbcouncil.org/post/announcing-the-official-release-of-ldbc-financial-benchmark/</guid>
<description><p>We are delighted to announce the official release of the initial version (v0.1.0) of <a href="https://ldbcouncil.org/benchmarks/finbench/">Financial Benchmark (FinBench)</a>.</p>
<p>The Financial Benchmark (FinBench) project defines a graph database benchmark targeting financial scenarios such as anti-fraud and risk control. It is maintained by the <a href="https://ldbcouncil.org/benchmarks/finbench/ldbc-finbench-work-charter.pdf">LDBC FinBench Task Force</a>. The benchmark has one workload currently, <strong>Transaction Workload</strong>, capturing OLTP scenario with complex read queries that access the neighbourhood of a given node in the graph and write queries that continuously insert or delete data in the graph.</p>
<p>Compared to LDBC SNB, the FinBench differs in application scenarios, data patterns, and workloads, resulting in different schema characteristics, latency bounds, path filters, etc. For a brief overview, see the <a href="https://ldbcouncil.org/benchmarks/finbench/finbench-talk-16th-tuc.pdf">slides</a> in the 16th TUC. The <a href="https://arxiv.org/pdf/2306.15975.pdf">Financial Benchmark&rsquo;s specification</a> can be found on arXiv.</p>
<p>The release of FinBench initial version (v0.1.0) was approved by LDBC on June 23, 2023. It is the good beginning of FinBench. In the future, the FinBench Task Force will polish the benchmark continuously.</p>
<p>If you are interested in joining FinBench Task Force, please reach out at info at ldbcouncil.org or qishipeng.qsp at antgroup.com.</p>
</description>
</item>
<item>
<title>Sixteenth TUC Meeting</title>
<link>https://ldbcouncil.org/event/sixteenth-tuc-meeting/</link>
<pubDate>Fri, 23 Jun 2023 09:00:00 -0800</pubDate>
<guid>https://ldbcouncil.org/event/sixteenth-tuc-meeting/</guid>
<description><p><strong>Organizers:</strong> Oskar van Rest, Alastair Green, Gábor Szárnyas</p>
<p>LDBC is hosting a <strong>two-day</strong> hybrid workshop, co-located with <a href="https://2023.sigmod.org/venue.shtml">SIGMOD 2023</a> on <strong>June 23-24 (Friday-Saturday)</strong>.</p>
<p>The program consists of 10- and 15-minute talks followed by a Q&amp;A session. The talks will be recorded and made available online. <strong>If you would like to participate please register using <a href="https://forms.gle/T6bwVHzK9V5FaKyR9">our form</a>.</strong></p>
<p>LDBC will host a <strong>social event</strong> on Friday at the <a href="https://www.blackbottleseattle.com/">Black Bottle gastrotavern</a> in Belltown: <a href="https://goo.gl/maps/hQzBRR2nerZEQExw7">2600 1st Ave (on the corner of Vine), Seattle, WA 98121</a>.</p>
<p>In addition, AWS will host a <strong>Happy Hour</strong> (rooftop grill with beverages) on Saturday on the Amazon Nitro South building&rsquo;s 8th floor deck: <a href="https://goo.gl/maps/md5kWUHaNUGhR9JB7">2205 8th Ave, Seattle, WA 98121</a>.</p>
<h3 id="program">Program</h3>
<p><strong>All times are in PDT.</strong></p>
<h4 id="friday">Friday</h4>
<p><strong>Location:</strong> Hyatt Regency Bellevue on Seattle&rsquo;s Eastside, <strong>room Grand K</strong>, co-located with SIGMOD (900 Bellevue Way NE, Bellevue, WA 98004-4272)</p>
<table>
<thead>
<tr>
<th>start</th>
<th>finish</th>
<th>speaker</th>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>08:45</td>
<td>Oskar van Rest (Oracle)</td>
<td>LDBC – State of the union – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/oskar-van-rest-ldbc-state-of-the-union.pdf">slides</a>, <a href="https://youtu.be/Frk7ITssaSY">video</a></td>
</tr>
<tr>
<td>08:50</td>
<td>09:05</td>
<td>Keith Hare (JCC / WG3)</td>
<td>An update on the GQL &amp; SQL/PGQ standards efforts – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/keith-hare-an-update-on-the-gql-and-sql-pgq-standards-efforts.pdf">slides</a>, <a href="https://youtu.be/LQYkal_0j6E">video</a></td>
</tr>
<tr>
<td>09:10</td>
<td>09:25</td>
<td>Stefan Plantikow (Neo4j / WG3)</td>
<td>GQL - Introduction to a new query language standard – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/stefan-plantikow-gql-v1.pdf">slides</a></td>
</tr>
<tr>
<td>09:30</td>
<td>09:45</td>
<td>Leonid Libkin (University of Edinburgh &amp; RelationalAI)</td>
<td>Formalizing GQL – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/leonid-libkin-formalizing-gql.pdf">slides</a>, <a href="https://youtu.be/YZE1a00h1I4">video</a></td>
</tr>
<tr>
<td>09:50</td>
<td>10:05</td>
<td>Semen Panenkov (JetBrains Research)</td>
<td>Mechanizing the GQL semantics in Coq – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/semyon-panenkov-gql-in-coq.pdf">slides</a>, <a href="https://youtu.be/5xBGohqWCzo">videos</a></td>
</tr>
<tr>
<td>10:10</td>
<td>10:25</td>
<td>Oskar van Rest (Oracle)</td>
<td>SQL Property Graphs in Oracle Database and Oracle Graph Server (PGX) – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/oskar-van-rest-sql-property-graphs-in-oracle-database-and-oracle-graph-server-pgx.pdf">slides</a>, <a href="https://youtu.be/owM9WiQubpg">video</a></td>
</tr>
<tr>
<td>10:30</td>
<td>11:00</td>
<td><em>coffee break</em></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>11:15</td>
<td>Alastair Green (JCC)</td>
<td>LDBC&rsquo;s organizational changes and fair use policies – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/alastair-green-ldbc-corporate-restructuring-and-fair-use-policies.pdf">slides</a></td>
</tr>
<tr>
<td>11:20</td>
<td>11:35</td>
<td>Ioana Manolescu (INRIA)</td>
<td>Integrating Connection Search in Graph Queries – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/ioana-manolescu-integrating-connection-search-in-graph-queries.pdf">slides</a>, <a href="https://youtu.be/LQPnmcrkUpY">video</a></td>
</tr>
<tr>
<td>11:40</td>
<td>11:55</td>
<td>Maciej Besta (ETH Zurich)</td>
<td>Neural Graph Databases with Graph Neural Networks – <a href="https://youtu.be/ce5qNievRNs">video</a></td>
</tr>
<tr>
<td>12:00</td>
<td>12:10</td>
<td>Longbin Lai (Alibaba Damo Academy)</td>
<td>To Revisit Benchmarking Graph Analytics – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/longbin-lai-benchmark-ldbc.pdf">slides</a>, <a href="https://youtu.be/s9Vtt-6t_FI">video</a></td>
</tr>
<tr>
<td>12:15</td>
<td>13:30</td>
<td><em>lunch</em></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>13:45</td>
<td>Yuanyuan Tian (Gray Systems Lab, Microsoft)</td>
<td>The World of Graph Databases from An Industry Perspective – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/yuanyuan-tian-world-of-graph-databases.pdf">slides</a>, <a href="https://youtu.be/AZuP_b95GPM">video</a></td>
</tr>
<tr>
<td>13:50</td>
<td>14:05</td>
<td>Alin Deutsch (UC San Diego &amp; TigerGraph)</td>
<td>TigerGraph&rsquo;s Parallel Computation Model – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/alin-deutsch-tigergraphs-computation-model.pdf">slides</a>, <a href="https://youtu.be/vcxdieJB80Y">video</a></td>
</tr>
<tr>
<td>14:10</td>
<td>14:25</td>
<td>Chen Zhang (CreateLink)</td>
<td>Applications of a Native Distributed Graph Database in the Financial Industry – <a href="https://youtu.be/GCCT79Sps9I">video</a></td>
</tr>
<tr>
<td>14:30</td>
<td>14:45</td>
<td>Ricky Sun (Ultipa)</td>
<td>Design of highly scalable graph database systems – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/ricky-sun-ultipa.pdf">slides</a>, <a href="https://youtu.be/Sg1F64O4vGM">video</a></td>
</tr>
<tr>
<td>14:50</td>
<td>15:30</td>
<td><em>coffee break</em></td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>15:45</td>
<td>Heng Lin (Ant Group)</td>
<td>The LDBC SNB implementation in TuGraph – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/heng-lin-the-ldbc-snb-implementation-in-tugraph.pdf">slides</a>, <a href="https://youtu.be/fy8AuVerwnY">video</a></td>
</tr>
<tr>
<td>15:50</td>
<td>16:05</td>
<td>Shipeng Qi (Ant Group)</td>
<td>FinBench: The new LDBC benchmark targeting financial scenario – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/shipeng-qi-finbench.pdf">slides</a>, <a href="https://youtu.be/0xLZadDOfZk">video</a></td>
</tr>
<tr>
<td>16:10</td>
<td>17:00</td>
<td>host: Heng Lin (Ant Group), panelists: Longbin Lai (Alibaba Damo Academy), Ricky Sun (Ultipa), Gabor Szarnyas (CWI), Yuanyuan Tian (Gray Systems Lab, Microsoft)</td>
<td>FinBench panel – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/heng-lin-finbench-panel.pdf">slides</a></td>
</tr>
<tr>
<td>19:00</td>
<td>22:00</td>
<td><em>dinner</em></td>
<td><em><a href="https://www.blackbottleseattle.com/">Black Bottle gastrotavern</a> in Belltown: <a href="https://goo.gl/maps/hQzBRR2nerZEQExw7">2600 1st Ave (on the corner of Vine), Seattle, WA 98121</a></em></td>
</tr>
</tbody>
</table>
<h4 id="saturday">Saturday</h4>
<p><strong>Location:</strong> Amazon Nitro South building, <strong>room 03.204</strong> (<a href="https://goo.gl/maps/md5kWUHaNUGhR9JB7">2205 8th Ave, Seattle, WA 98121</a>)</p>
<table>
<thead>
<tr>
<th>start</th>
<th>finish</th>
<th>speaker</th>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>09:45</td>
<td>Brad Bebee (AWS)</td>
<td>Customers don&rsquo;t want a graph database, so why are we still here? – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/brad-bebee-tuc-keynote.pdf">slides</a>, <a href="https://youtu.be/bJlkpDC--fM">video</a></td>
</tr>
<tr>
<td>10:00</td>
<td>10:15</td>
<td>Muhammad Attahir Jibril (TU Ilmenau)</td>
<td>Fast and Efficient Update Handling for Graph H2TAP – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/muhammad-attahir-jibril-fast-and-efficient-update-handling-for-graph-h2tap.pdf">slides</a>, <a href="https://youtu.be/e8ZAszBsXV0">video</a></td>
</tr>
<tr>
<td>10:20</td>
<td>11:00</td>
<td><em>coffee break</em></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>11:15</td>
<td>Gabor Szarnyas (CWI)</td>
<td>LDBC Social Network Benchmark and Graphalytics – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/gabor-szarnyas-ldbc-social-network-benchmark-and-graphalytics.pdf">slides</a></td>
</tr>
<tr>
<td>11:20</td>
<td>11:30</td>
<td>Atanas Kiryakov and Tomas Kovachev (Ontotext)</td>
<td>GraphDB – Benchmarking against LDBC SNB &amp; SPB – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/tomas-kovatchev-atanas-kiryakov-benchmarking-graphdb-with-snb-and-spb.pdf">slides</a>, <a href="https://youtu.be/U6OPpNFOWqg">video</a></td>
</tr>
<tr>
<td>11:35</td>
<td>11:50</td>
<td>Roi Lipman (Redis Labs)</td>
<td>Delta sparse matrices within RedisGraph – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/roi-lipman-delta-matrix.pdf">slides</a>, <a href="https://youtu.be/qfKsplV4Ihk">video</a></td>
</tr>
<tr>
<td>11:55</td>
<td>12:05</td>
<td>Rathijit Sen (Microsoft)</td>
<td>Microarchitectural Analysis of Graph BI Queries on RDBMS – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/rathijit-sen-microarchitectural-analysis.pdf">slides</a>, <a href="https://youtu.be/55B8CkH09js">video</a></td>
</tr>
<tr>
<td>12:10</td>
<td>13:30</td>
<td><em>lunch</em></td>
<td><em>on your own</em></td>
</tr>
<tr>
<td>13:30</td>
<td>13:45</td>
<td>Alastair Green (JCC)</td>
<td>LEX &ndash; LDBC Extended GQL Schema – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/alastair-green-lex.pdf">slides</a>, <a href="https://youtu.be/DVpeb4Ce9Uw">video</a></td>
</tr>
<tr>
<td>13:50</td>
<td>14:05</td>
<td>Ora Lassila (AWS)</td>
<td>Why limit yourself to {RDF, LPG} when you can do {RDF, LPG}, too – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/ora-lassila-why-limit-yourself-to-lpg-when-you-can-do-rdf-too.pdf">slides</a>, <a href="https://youtu.be/7uAInoUwdds">video</a></td>
</tr>
<tr>
<td>14:10</td>
<td>14:25</td>
<td>Jan Hidders (Birkbeck, University of London)</td>
<td>PG-Schema: a proposal for a schema language for property graphs – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/jan-hidders-pg-schema.pdf">slides</a>, <a href="https://youtu.be/yQNL8hBTE4M">video</a></td>
</tr>
<tr>
<td>14:30</td>
<td>14:45</td>
<td>Max de Marzi (RageDB and RelationalAI)</td>
<td>RageDB: Building a Graph Database in Anger – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/max-de-marzi-ragedb-building-a-graph-database-in-anger.pdf">slides</a>, <a href="https://youtu.be/LBbF8aslYFE">video</a></td>
</tr>
<tr>
<td>14:50</td>
<td>15:30</td>
<td><em>coffee break</em></td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>15:45</td>
<td>Umit Catalyurek (AWS)</td>
<td>HPC Graph Analytics on the OneGraph Model – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/umit-catalyurek-onegraph-hpc.pdf">slides</a>, <a href="https://youtu.be/64tv5LA6Wr8">video</a></td>
</tr>
<tr>
<td>15:50</td>
<td>16:05</td>
<td>David J. Haglin (Trovares)</td>
<td>How LDBC impacts Trovares – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/david-haglin-trovares.pdf">slides</a>, <a href="">video</a></td>
</tr>
<tr>
<td>16:10</td>
<td>16:25</td>
<td>Wenyuan Yu (Alibaba Damo Academy)</td>
<td>GraphScope Flex: A Graph Computing Stack with LEGO-Like Modularity – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/wenyuan-yu-graphscope-flex.pdf">slides</a>, <a href="https://youtu.be/cRikoyDmMks">video</a></td>
</tr>
<tr>
<td>16:30</td>
<td>16:40</td>
<td>Scott McMillan (Carnegie Mellon University)</td>
<td>Graph processing using GraphBLAS – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/scott-mcmillan-graph-processing-using-graphblas.pdf">slides</a>, <a href="https://youtu.be/yb4hGBhUzQQ">video</a></td>
</tr>
<tr>
<td>16:45</td>
<td>16:55</td>
<td>Tim Mattson (Intel)</td>
<td>Graphs (GraphBLAS) and storage (TileDB) as Sparse Linear algebra – <a href="https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/event/sixteenth-tuc-meeting/attachments/tim-mattson-graphblas-and-tiledb.pdf">slides</a></td>
</tr>
<tr>
<td>17:00</td>
<td>20:00</td>
<td><em>happy hour (rooftop grill with beverages)</em></td>
<td><em>on the Nitro South building&rsquo;s 8th floor deck</em></td>
</tr>
</tbody>
</table>
<h4 id="tuc-event-locations">TUC event locations</h4>
<p>A <a href="https://www.google.com/maps/d/u/0/edit?mid=19_fi4fV-3-PZkNWCCcmhU86ct2EZXbgo">map of the LDBC TUC events</a> we hosted so far.</p>
</description>
</item>
<item>
<title>LDBC SNB – Early 2023 updates</title>
<link>https://ldbcouncil.org/post/ldbc-snb-early-2023-updates/</link>
<pubDate>Wed, 15 Feb 2023 00:00:00 +0000</pubDate>
<guid>https://ldbcouncil.org/post/ldbc-snb-early-2023-updates/</guid>
<description><p>2023 has been an eventful year for us so far. Here is a summary of our recent activities.</p>
<ol>
<li>
<p>Our paper <a href="https://ldbcouncil.org/docs/papers/ldbc-snb-bi-vldb-2022.pdf">The LDBC Social Network Benchmark: Business Intelligence Workload</a> was published in PVLDB.</p>
</li>
<li>
<p>David Püroja just completed his MSc thesis on creating a design towards <a href="https://ldbcouncil.org/docs/papers/msc-thesis-david-puroja-snb-interactive-v2-2023.pdf">SNB Interactive v2</a> at CWI&rsquo;s Database Architectures group. David and I gave a deep-dive talk at the FOSDEM conference&rsquo;s graph developer room titled <a href="https://fosdem.org/2023/schedule/event/graph_ldbc/">The LDBC Social Network Benchmark</a> (<a href="https://www.youtube.com/watch?v=YNF6z6gtXY4">YouTube mirror</a>).</p>
</li>
<li>
<p>I gave a lightning talk at FOSDEM&rsquo;s HPC developer room titled <a href="https://www.youtube.com/watch?v=q26DHnQFw54">The LDBC Benchmark Suite</a> (<a href="https://www.youtube.com/watch?v=q26DHnQFw54">YouTube mirror</a>).</p>
</li>
<li>
<p>Our auditors have successfully benchmark a number of systems:</p>
<ul>
<li>SPB with the Ontotext GraphDB systems for the SF3 and SF5 data sets (auditor: Pjotr Scholtze)</li>
<li>SNB Interactive with the Ontotext GraphDB system for the SF30 data set (auditor: David Püroja)</li>
<li>SNB Interactive with the TuGraph system running in the Aliyun cloud for the SF30, SF100, and SF300 data sets (auditor: Márton Búr)</li>
</ul>
</li>
</ol>
<p>The results and the full disclosure reports are available under the <a href="https://ldbcouncil.org/benchmarks/spb/">SPB</a> and <a href="https://ldbcouncil.org/benchmarks/snb/">SNB benchmark pages</a>.</p>
</description>
</item>
<item>
<title>LDBC SNB Datagen – The winding path to SF100K</title>
<link>https://ldbcouncil.org/post/ldbc-snb-datagen-the-winding-path-to-sf100k/</link>
<pubDate>Tue, 13 Sep 2022 00:00:00 +0000</pubDate>
<guid>https://ldbcouncil.org/post/ldbc-snb-datagen-the-winding-path-to-sf100k/</guid>
<description><p>LDBC SNB provides a data generator, which produces synthetic datasets, mimicking a social network’s activity during a period of time. Datagen is defined by the charasteristics of realism, scalability, determinism and usability. More than two years have elapsed since my <a href="https://ldbcouncil.org/post/speeding-up-ldbc-snb-datagen/">last technical update</a> on LDBC SNB Datagen, in which I discussed the reasons for moving the code to Apache Spark from the MapReduce-based Apache Hadoop implementation and the challenges I faced during the migration. Since then, we reached several goals such as we refactored the serializers to use Spark&rsquo;s high-level writers to support the popular Parquet data format and to enable running on spot nodes; brought back factor generation; implemented support for the novel BI benchmark; and optimized the runtime to generate SF30K on 20 i3.4xlarge machines on AWS.</p>
<h1 id="moving-to-sparksql">Moving to SparkSQL</h1>
<p>We planned to move parts of the code to SparkSQL, an optimized runtime framework for tabular data. We hypothesized that this would benefit us on multiple fronts: SparkSQL offers an efficient batch analytics runtime, with higher level abstractions that are simpler to understand and work with, and we could easily add support for serializing to Parquet based on SparkSQL&rsquo;s capabilites.</p>
<blockquote>
<p>Spark SQL is a Spark module for structured data processing. It provides a programming abstraction called DataFrames and can also act as a distributed SQL query engine. Spark SQL includes a cost-based optimizer, columnar storage, and code generation to make queries fast.</p>
</blockquote>
<p>Dealing with the dataset generator proved quite tricky, because it samples from various hand-written distributions and dictionaries, and contains complex domain logic, for which SparkSQL unsuitable. We assessed that the best thing we could do is wrap entire entity generation procedures in UDFs (user defined SQL functions). However, several of these generators return entity trees<sup id="fnref:1"><a href="#fn:1" class="footnote-ref" role="doc-noteref">1</a></sup>, which are spread across multiple tables by the serializer, and these would have needed to be split up. Further complicating matters, we would have also had to find a way to coordinate the inner random generators&rsquo; state between the UDFs to ensure deterministic execution. Weighing these and that we could not find much benefit in SparkSQL, we ultimately decided to leave entity generation as it is. We limited the SparkSQL refactor to the following areas:</p>
<ol>
<li>table manipulations related to shaping the output into the supported layouts and data types as set forth in the specification;</li>
<li>deriving the Interactive and BI datasets;</li>
<li>and generating the factor tables, which contain analytic information, such as population per country, number of friendships between city pairs, number of messages per day, etc., used by the substitution parameter generator to ensure predictable query runtimes.</li>
</ol>
<p>We refer to points (1.) and (2.) collectively as dataset transformation, while (3.) as factor generation. Initially, these had been part of the generator, extracted as part of this refactor, which resulted in cleaner, more maintainable design.</p>
<p><img src="datagen_df_0.png" alt="Datagen stages"></p>
<p>The diagram above shows the components on a high level. The generator outputs a dataset called IR (intermediate representation), which is immediately written to disk. Then, the IR is input to the dataset transformation and factor generation stages, which respectively generate the final dataset and the factor tables. We are aware that spitting out the IR adds considerable runtime overhead and doubles the disk requirements in the worst-case scenario, however, we found that there&rsquo;s no simple way to avoid<br>
it, as the generator produces entity trees, which are incompatible with the flat, tabular, column oriented layout of SparkSQL. On the positive side, this design enables us to reuse the generator output for multiple transformations and add new factor tables without regenerating the data.</p>
<p>I&rsquo;ll skip describing the social network graph dataset generator (i.e. stage 1) in any more detail, apart from its serializer, as that was the only part involved in the current refactor. If you are interested in more details, you may look up the <a href="https://ldbcouncil.org/post/speeding-up-ldbc-snb-datagen/">previous blogpost in the series</a> or the <a href="https://arxiv.org/abs/2001.02299">Interactive benchmark specification</a>.</p>
<h1 id="transformation-pipeline">Transformation pipeline</h1>
<p>The dataset transformation stage sets off where generation finished, and applies an array of pluggable transformations:</p>
<ul>
<li>explodes edges and / or attributes into separate tables,</li>
<li>subsets the snapshot part and creates insert / delete batches for the BI workload,</li>
<li>subsets the snapshot part for the Interactive workload,</li>
<li>applies formatting related options such as date time representation,</li>
<li>serializes the data to a Spark supported format (CSV, Parquet),</li>
</ul>
<p>We utilize a flexible data pipeline that operates on the graph.</p>
<div class="highlight"><pre tabindex="0" style="color:#f8f8f2;background-color:#272822;-moz-tab-size:4;-o-tab-size:4;tab-size:4;"><code class="language-scala" data-lang="scala"><span style="display:flex;"><span><span style="color:#66d9ef">trait</span> <span style="color:#a6e22e">Transform</span><span style="color:#f92672">[</span><span style="color:#66d9ef">M1</span> <span style="color:#66d9ef">&lt;:</span> <span style="color:#66d9ef">Mode</span>, <span style="color:#66d9ef">M2</span> <span style="color:#66d9ef">&lt;:</span> <span style="color:#66d9ef">Mode</span><span style="color:#f92672">]</span> <span style="color:#a6e22e">extends</span> <span style="color:#f92672">(</span><span style="color:#a6e22e">Graph</span><span style="color:#f92672">[</span><span style="color:#66d9ef">M1</span><span style="color:#f92672">]</span> <span style="color:#66d9ef">=&gt;</span> <span style="color:#a6e22e">Graph</span><span style="color:#f92672">[</span><span style="color:#66d9ef">M2</span><span style="color:#f92672">])</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">type</span> <span style="color:#66d9ef">In</span> <span style="color:#f92672">=</span> <span style="color:#a6e22e">Graph</span><span style="color:#f92672">[</span><span style="color:#66d9ef">M1</span><span style="color:#f92672">]</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">type</span> <span style="color:#66d9ef">Out</span> <span style="color:#f92672">=</span> <span style="color:#a6e22e">Graph</span><span style="color:#f92672">[</span><span style="color:#66d9ef">M2</span><span style="color:#f92672">]</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">def</span> transform<span style="color:#f92672">(</span>input<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">In</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Out</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">override</span> <span style="color:#66d9ef">def</span> apply<span style="color:#f92672">(</span>v<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Graph</span><span style="color:#f92672">[</span><span style="color:#66d9ef">M1</span><span style="color:#f92672">])</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Graph</span><span style="color:#f92672">[</span><span style="color:#66d9ef">M2</span><span style="color:#f92672">]</span> <span style="color:#66d9ef">=</span> transform<span style="color:#f92672">(</span>v<span style="color:#f92672">)</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">}</span>
</span></span></code></pre></div><p>The <code>Transform</code> trait encodes a pure (side effect-free) function polymorphic over graphs, so that transformation pipelines can be expressed with ordinary function composition in a type safe manner. Let&rsquo;s see some of the transformations we have.</p>
<div class="highlight"><pre tabindex="0" style="color:#f8f8f2;background-color:#272822;-moz-tab-size:4;-o-tab-size:4;tab-size:4;"><code class="language-scala" data-lang="scala"><span style="display:flex;"><span><span style="color:#66d9ef">case</span> <span style="color:#66d9ef">class</span> <span style="color:#a6e22e">RawToBiTransform</span><span style="color:#f92672">(</span>mode<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">BI</span><span style="color:#f92672">,</span> simulationStart<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Long</span><span style="color:#f92672">,</span> simulationEnd<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Long</span><span style="color:#f92672">,</span> keepImplicitDeletes<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Boolean</span><span style="color:#f92672">)</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">extends</span> <span style="color:#a6e22e">Transform</span><span style="color:#f92672">[</span><span style="color:#66d9ef">Mode.Raw.</span><span style="color:#66d9ef">type</span>, <span style="color:#66d9ef">Mode.BI</span><span style="color:#f92672">]</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">override</span> <span style="color:#66d9ef">def</span> transform<span style="color:#f92672">(</span>input<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">In</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Out</span> <span style="color:#f92672">=</span> <span style="color:#f92672">???</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span><span style="color:#66d9ef">case</span> <span style="color:#66d9ef">class</span> <span style="color:#a6e22e">RawToInteractiveTransform</span><span style="color:#f92672">(</span>mode<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Mode.Interactive</span><span style="color:#f92672">,</span> simulationStart<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Long</span><span style="color:#f92672">,</span> simulationEnd<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Long</span><span style="color:#f92672">)</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">extends</span> <span style="color:#a6e22e">Transform</span><span style="color:#f92672">[</span><span style="color:#66d9ef">Mode.Raw.</span><span style="color:#66d9ef">type</span>, <span style="color:#66d9ef">Mode.Interactive</span><span style="color:#f92672">]</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">override</span> <span style="color:#66d9ef">def</span> transform<span style="color:#f92672">(</span>input<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">In</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Out</span> <span style="color:#f92672">=</span> <span style="color:#f92672">???</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span><span style="color:#66d9ef">object</span> <span style="color:#a6e22e">ExplodeEdges</span> <span style="color:#66d9ef">extends</span> <span style="color:#a6e22e">Transform</span><span style="color:#f92672">[</span><span style="color:#66d9ef">Mode.Raw.</span><span style="color:#66d9ef">type</span>, <span style="color:#66d9ef">Mode.Raw.</span><span style="color:#66d9ef">type</span><span style="color:#f92672">]</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">override</span> <span style="color:#66d9ef">def</span> transform<span style="color:#f92672">(</span>input<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">In</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Out</span> <span style="color:#f92672">=</span> <span style="color:#f92672">???</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span><span style="color:#66d9ef">object</span> <span style="color:#a6e22e">ExplodeAttrs</span> <span style="color:#66d9ef">extends</span> <span style="color:#a6e22e">Transform</span><span style="color:#f92672">[</span><span style="color:#66d9ef">Mode.Raw.</span><span style="color:#66d9ef">type</span>, <span style="color:#66d9ef">Mode.Raw.</span><span style="color:#66d9ef">type</span><span style="color:#f92672">]</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">override</span> <span style="color:#66d9ef">def</span> transform<span style="color:#f92672">(</span>input<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">In</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Out</span> <span style="color:#f92672">=</span> <span style="color:#f92672">???</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">}</span>
</span></span></code></pre></div><p>Therefore, a transformation pipeline may look like this:</p>
<div class="highlight"><pre tabindex="0" style="color:#f8f8f2;background-color:#272822;-moz-tab-size:4;-o-tab-size:4;tab-size:4;"><code class="language-scala" data-lang="scala"><span style="display:flex;"><span><span style="color:#66d9ef">val</span> transform <span style="color:#66d9ef">=</span> <span style="color:#a6e22e">ExplodeAttrs</span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">.</span>andThen<span style="color:#f92672">(</span><span style="color:#a6e22e">ExplodeEdges</span><span style="color:#f92672">)</span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">.</span>andThen<span style="color:#f92672">(</span><span style="color:#a6e22e">RawToInteractiveTransform</span><span style="color:#f92672">(</span>params<span style="color:#f92672">,</span> start<span style="color:#f92672">,</span> end<span style="color:#f92672">))</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span><span style="color:#66d9ef">val</span> outputGraph <span style="color:#66d9ef">=</span> transform<span style="color:#f92672">(</span>inputGraph<span style="color:#f92672">)</span>
</span></span></code></pre></div><p>The <code>Graph</code> record has a <code>definition</code> field containing graph-global metadata, whereas <code>entities</code> holds the datasets keyed by their entity type. There are 3 graph <em>modes</em> currently: <code>Raw</code>, <code>Interactive</code> and <code>BI</code>. The BI dataset has different layout than the rest, as it contains incremental inserts and deletes for the entities additionally to the bulk snapshot. This is captured in the <code>Layout</code> dependent type, over which the entities are polymorphic.</p>
<p>It&rsquo;s important to understand that <code>Graph</code> holds <code>DataFrame</code>s, and these are lazily computed by Spark. So, <code>Graph</code> is merely a description of transformations used to derive the comprising datasets, which makes them subject to all the SparkSQL fanciness such as query optimization, whole stage code generation, and so on. Processing is delayed until an action (such as a disk write) forces it.</p>
<div class="highlight"><pre tabindex="0" style="color:#f8f8f2;background-color:#272822;-moz-tab-size:4;-o-tab-size:4;tab-size:4;"><code class="language-scala" data-lang="scala"><span style="display:flex;"><span><span style="color:#66d9ef">case</span> <span style="color:#66d9ef">class</span> <span style="color:#a6e22e">GraphDef</span><span style="color:#f92672">[</span><span style="color:#66d9ef">+M</span> <span style="color:#66d9ef">&lt;:</span> <span style="color:#66d9ef">Mode</span><span style="color:#f92672">](</span>
</span></span><span style="display:flex;"><span> isAttrExploded<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Boolean</span><span style="color:#f92672">,</span>
</span></span><span style="display:flex;"><span> isEdgesExploded<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Boolean</span><span style="color:#f92672">,</span>
</span></span><span style="display:flex;"><span> useTimestamp<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Boolean</span><span style="color:#f92672">,</span>
</span></span><span style="display:flex;"><span> mode<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">M</span><span style="color:#f92672">,</span>
</span></span><span style="display:flex;"><span> entities<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Map</span><span style="color:#f92672">[</span><span style="color:#66d9ef">EntityType</span>, <span style="color:#66d9ef">Option</span><span style="color:#f92672">[</span><span style="color:#66d9ef">String</span><span style="color:#f92672">]]</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">)</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span><span style="color:#66d9ef">case</span> <span style="color:#66d9ef">class</span> <span style="color:#a6e22e">Graph</span><span style="color:#f92672">[</span><span style="color:#66d9ef">+M</span> <span style="color:#66d9ef">&lt;:</span> <span style="color:#66d9ef">Mode</span><span style="color:#f92672">](</span>
</span></span><span style="display:flex;"><span> definition<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">GraphDef</span><span style="color:#f92672">[</span><span style="color:#66d9ef">M</span><span style="color:#f92672">],</span>
</span></span><span style="display:flex;"><span> entities<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Map</span><span style="color:#f92672">[</span><span style="color:#66d9ef">EntityType</span>, <span style="color:#66d9ef">M</span><span style="color:#66d9ef">#</span><span style="color:#66d9ef">Layout</span><span style="color:#f92672">]</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">)</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span><span style="color:#66d9ef">sealed</span> <span style="color:#66d9ef">trait</span> <span style="color:#a6e22e">Mode</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">type</span> <span style="color:#66d9ef">Layout</span>
</span></span><span style="display:flex;"><span> <span style="color:#75715e">/* ... */</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span><span style="color:#66d9ef">object</span> <span style="color:#a6e22e">Mode</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">final</span> <span style="color:#66d9ef">case</span> <span style="color:#66d9ef">object</span> <span style="color:#a6e22e">Raw</span> <span style="color:#66d9ef">extends</span> <span style="color:#a6e22e">Mode</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">type</span> <span style="color:#66d9ef">Layout</span> <span style="color:#f92672">=</span> <span style="color:#a6e22e">DataFrame</span>
</span></span><span style="display:flex;"><span> <span style="color:#75715e">/* ... */</span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">final</span> <span style="color:#66d9ef">case</span> <span style="color:#66d9ef">class</span> <span style="color:#a6e22e">Interactive</span><span style="color:#f92672">(</span>bulkLoadPortion<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Double</span><span style="color:#f92672">)</span> <span style="color:#66d9ef">extends</span> <span style="color:#a6e22e">Mode</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">type</span> <span style="color:#66d9ef">Layout</span> <span style="color:#f92672">=</span> <span style="color:#a6e22e">DataFrame</span>
</span></span><span style="display:flex;"><span> <span style="color:#75715e">/* ... */</span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">final</span> <span style="color:#66d9ef">case</span> <span style="color:#66d9ef">class</span> <span style="color:#a6e22e">BI</span><span style="color:#f92672">(</span>bulkloadPortion<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Double</span><span style="color:#f92672">,</span> batchPeriod<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">String</span><span style="color:#f92672">)</span> <span style="color:#66d9ef">extends</span> <span style="color:#a6e22e">Mode</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">type</span> <span style="color:#66d9ef">Layout</span> <span style="color:#f92672">=</span> <span style="color:#a6e22e">BatchedEntity</span>
</span></span><span style="display:flex;"><span> <span style="color:#75715e">/* ... */</span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">}</span>
</span></span></code></pre></div><p>You may notice that <code>Transform</code> is statically typed w.r.t. <code>Mode</code>, however other properties, like <code>isAttrExploded</code>, or <code>isEdgesExploded</code> are not captured in the type, and remain merely dynamic. This makes some nonsensical transformation pipelines (i.e. that explodes edges twice in a row) syntactically valid. This trade-off in compile-time safety was made to prevent overcomplicating the types.</p>
<p>As we already mentioned, <code>Graph</code> is essentially a persistent container of <code>EntityType -&gt; DataFrame</code> mappings. <code>EntityType</code> can be <code>Node</code>, <code>Edge</code> and <code>Attr</code>, and is used to identify the entity and embellish with static metadata, such a descriptive name and primary key, whether it is static or dynamic (as per the specification), and in case of edges, the source and destination type and cardinality. This makes it very simple to create transformation rules on static entity properties with pattern matching.</p>
<p>Usually, a graph transformation involves matching entities based on their <code>EntityType</code>, and modifying the mapping (and if required, other metadata). Take, for example, the <code>ExplodeAttrs</code> transformation, which explodes into separate tables the values of two columns of <code>Person</code> stored as arrays:</p>
<div class="highlight"><pre tabindex="0" style="color:#f8f8f2;background-color:#272822;-moz-tab-size:4;-o-tab-size:4;tab-size:4;"><code class="language-scala" data-lang="scala"><span style="display:flex;"><span><span style="color:#66d9ef">object</span> <span style="color:#a6e22e">ExplodeAttrs</span> <span style="color:#66d9ef">extends</span> <span style="color:#a6e22e">Transform</span><span style="color:#f92672">[</span><span style="color:#66d9ef">Mode.Raw.</span><span style="color:#66d9ef">type</span>, <span style="color:#66d9ef">Mode.Raw.</span><span style="color:#66d9ef">type</span><span style="color:#f92672">]</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">override</span> <span style="color:#66d9ef">def</span> transform<span style="color:#f92672">(</span>input<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">In</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Out</span> <span style="color:#f92672">=</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">if</span> <span style="color:#f92672">(</span>input<span style="color:#f92672">.</span>definition<span style="color:#f92672">.</span>isAttrExploded<span style="color:#f92672">)</span> <span style="color:#f92672">{</span> <span style="color:#75715e">// assert at runtime that the transformation hasn&#39;t been applied yet
</span></span></span><span style="display:flex;"><span><span style="color:#75715e"></span> <span style="color:#66d9ef">throw</span> <span style="color:#66d9ef">new</span> <span style="color:#a6e22e">AssertionError</span><span style="color:#f92672">(</span><span style="color:#e6db74">&#34;Attributes already exploded in the input graph&#34;</span><span style="color:#f92672">)</span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">def</span> explodedAttr<span style="color:#f92672">(</span>attr<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Attr</span><span style="color:#f92672">,</span> node<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">DataFrame</span><span style="color:#f92672">,</span> column<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Column</span><span style="color:#f92672">)</span> <span style="color:#66d9ef">=</span>
</span></span><span style="display:flex;"><span> attr <span style="color:#f92672">-&gt;</span> node<span style="color:#f92672">.</span>select<span style="color:#f92672">(</span>withRawColumns<span style="color:#f92672">(</span>attr<span style="color:#f92672">,</span> $<span style="color:#e6db74">&#34;id&#34;</span><span style="color:#f92672">.</span>as<span style="color:#f92672">(</span><span style="color:#e6db74">s&#34;</span><span style="color:#e6db74">${</span>attr<span style="color:#f92672">.</span>parent<span style="color:#e6db74">}</span><span style="color:#e6db74">Id&#34;</span><span style="color:#f92672">),</span> explode<span style="color:#f92672">(</span>split<span style="color:#f92672">(</span>column<span style="color:#f92672">,</span> <span style="color:#e6db74">&#34;;&#34;</span><span style="color:#f92672">)).</span>as<span style="color:#f92672">(</span><span style="color:#e6db74">s&#34;</span><span style="color:#e6db74">${</span>attr<span style="color:#f92672">.</span>attribute<span style="color:#e6db74">}</span><span style="color:#e6db74">Id&#34;</span><span style="color:#f92672">)))</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">val</span> modifiedEntities <span style="color:#66d9ef">=</span> input<span style="color:#f92672">.</span>entities
</span></span><span style="display:flex;"><span> <span style="color:#f92672">.</span>collect <span style="color:#f92672">{</span> <span style="color:#66d9ef">case</span> <span style="color:#f92672">(</span>k <span style="color:#66d9ef">@</span> <span style="color:#a6e22e">Node</span><span style="color:#f92672">(</span><span style="color:#e6db74">&#34;Person&#34;</span><span style="color:#f92672">,</span> <span style="color:#66d9ef">false</span><span style="color:#f92672">),</span> df<span style="color:#f92672">)</span> <span style="color:#66d9ef">=&gt;</span> <span style="color:#75715e">// match the Person node. This is the only one ExplodeAttrs should modify
</span></span></span><span style="display:flex;"><span><span style="color:#75715e"></span> <span style="color:#a6e22e">Map</span><span style="color:#f92672">(</span>
</span></span><span style="display:flex;"><span> explodedAttr<span style="color:#f92672">(</span><span style="color:#a6e22e">Attr</span><span style="color:#f92672">(</span><span style="color:#e6db74">&#34;Email&#34;</span><span style="color:#f92672">,</span> k<span style="color:#f92672">,</span> <span style="color:#e6db74">&#34;EmailAddress&#34;</span><span style="color:#f92672">),</span> df<span style="color:#f92672">,</span> $<span style="color:#e6db74">&#34;email&#34;</span><span style="color:#f92672">),</span> <span style="color:#75715e">// add a new &#34;PersonEmailEmailAddress&#34; entity derived by exploding the email column of Person
</span></span></span><span style="display:flex;"><span><span style="color:#75715e"></span> explodedAttr<span style="color:#f92672">(</span><span style="color:#a6e22e">Attr</span><span style="color:#f92672">(</span><span style="color:#e6db74">&#34;Speaks&#34;</span><span style="color:#f92672">,</span> k<span style="color:#f92672">,</span> <span style="color:#e6db74">&#34;Language&#34;</span><span style="color:#f92672">),</span> df<span style="color:#f92672">,</span> $<span style="color:#e6db74">&#34;language&#34;</span><span style="color:#f92672">),</span> <span style="color:#75715e">// add a new &#34;PersonSpeaksLanguage&#34; entity derived by exploding the language column of Person
</span></span></span><span style="display:flex;"><span><span style="color:#75715e"></span> k <span style="color:#f92672">-&gt;</span> df<span style="color:#f92672">.</span>drop<span style="color:#f92672">(</span><span style="color:#e6db74">&#34;email&#34;</span><span style="color:#f92672">,</span> <span style="color:#e6db74">&#34;language&#34;</span><span style="color:#f92672">)</span> <span style="color:#75715e">// drop the exploded columns from person
</span></span></span><span style="display:flex;"><span><span style="color:#75715e"></span> <span style="color:#f92672">)</span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">val</span> updatedEntities <span style="color:#66d9ef">=</span> modifiedEntities
</span></span><span style="display:flex;"><span> <span style="color:#f92672">.</span>foldLeft<span style="color:#f92672">(</span>input<span style="color:#f92672">.</span>entities<span style="color:#f92672">)(</span><span style="color:#66d9ef">_</span> <span style="color:#f92672">++</span> <span style="color:#66d9ef">_</span><span style="color:#f92672">)</span> <span style="color:#75715e">// merge-replace the modified entities in the graph
</span></span></span><span style="display:flex;"><span><span style="color:#75715e"></span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">val</span> updatedEntityDefinitions <span style="color:#66d9ef">=</span> modifiedEntities
</span></span><span style="display:flex;"><span> <span style="color:#f92672">.</span>foldLeft<span style="color:#f92672">(</span>input<span style="color:#f92672">.</span>definition<span style="color:#f92672">.</span>entities<span style="color:#f92672">)</span> <span style="color:#f92672">{</span> <span style="color:#f92672">(</span>e<span style="color:#f92672">,</span> v<span style="color:#f92672">)</span> <span style="color:#66d9ef">=&gt;</span>
</span></span><span style="display:flex;"><span> e <span style="color:#f92672">++</span> v<span style="color:#f92672">.</span>map<span style="color:#f92672">{</span> <span style="color:#66d9ef">case</span> <span style="color:#f92672">(</span>k<span style="color:#f92672">,</span> v<span style="color:#f92672">)</span> <span style="color:#66d9ef">=&gt;</span> k <span style="color:#f92672">-&gt;</span> <span style="color:#a6e22e">Some</span><span style="color:#f92672">(</span>v<span style="color:#f92672">.</span>schema<span style="color:#f92672">.</span>toDDL<span style="color:#f92672">)</span> <span style="color:#f92672">}</span> <span style="color:#75715e">// update the entity definition schema to reflect the modifications
</span></span></span><span style="display:flex;"><span><span style="color:#75715e"></span> <span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">val</span> l <span style="color:#66d9ef">=</span> lens<span style="color:#f92672">[</span><span style="color:#66d9ef">In</span><span style="color:#f92672">]</span> <span style="color:#75715e">// lenses provide a terse syntax for modifying nested fields
</span></span></span><span style="display:flex;"><span><span style="color:#75715e"></span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">(</span>l<span style="color:#f92672">.</span>definition<span style="color:#f92672">.</span>isAttrExploded <span style="color:#f92672">~</span> l<span style="color:#f92672">.</span>definition<span style="color:#f92672">.</span>entities <span style="color:#f92672">~</span> l<span style="color:#f92672">.</span>entities<span style="color:#f92672">).</span>set<span style="color:#f92672">(</span>input<span style="color:#f92672">)((</span><span style="color:#66d9ef">true</span><span style="color:#f92672">,</span> updatedEntityDefinitions<span style="color:#f92672">,</span> updatedEntities<span style="color:#f92672">))</span>
</span></span><span style="display:flex;"><span> <span style="color:#f92672">}</span>
</span></span></code></pre></div><p>Note that <code>EntityType</code> does not hold the dataset&rsquo;s full SQL schema currently, as it&rsquo;s not useful for pattern matching, but can be accessed directly from <code>DataFrame</code> if needed.</p>
<h1 id="inputoutput">Input/output</h1>
<p>The <code>Reader</code> and <code>Writer</code> typeclasses are used to read from a <code>Source</code> and write to a <code>Sink</code> respectively, terminating a graph transformation pipeline<br>
on both ends.</p>
<div class="highlight"><pre tabindex="0" style="color:#f8f8f2;background-color:#272822;-moz-tab-size:4;-o-tab-size:4;tab-size:4;"><code class="language-scala" data-lang="scala"><span style="display:flex;"><span><span style="color:#66d9ef">trait</span> <span style="color:#a6e22e">Reader</span><span style="color:#f92672">[</span><span style="color:#66d9ef">T</span><span style="color:#f92672">]</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">type</span> <span style="color:#66d9ef">Ret</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">def</span> read<span style="color:#f92672">(</span>self<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">T</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Ret</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">def</span> exists<span style="color:#f92672">(</span>self<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">T</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Boolean</span>
</span></span><span style="display:flex;"><span><span style="color:#f92672">}</span>
</span></span><span style="display:flex;"><span>
</span></span><span style="display:flex;"><span><span style="color:#66d9ef">trait</span> <span style="color:#a6e22e">Writer</span><span style="color:#f92672">[</span><span style="color:#66d9ef">S</span><span style="color:#f92672">]</span> <span style="color:#f92672">{</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">type</span> <span style="color:#66d9ef">Data</span>
</span></span><span style="display:flex;"><span> <span style="color:#66d9ef">def</span> write<span style="color:#f92672">(</span>self<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Data</span><span style="color:#f92672">,</span> sink<span style="color:#66d9ef">:</span> <span style="color:#66d9ef">S</span><span style="color:#f92672">)</span><span style="color:#66d9ef">:</span> <span style="color:#66d9ef">Unit</span>