Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: BitVec.Lemmas - drop non-terminal simps #5499

Merged
merged 5 commits into from
Sep 28, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 23 additions & 20 deletions src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,8 @@ theorem getMsbD_eq_getMsb?_getD (x : BitVec w) (i : Nat) :
· simp [getMsb?, h]
· rw [getLsbD_eq_getElem?_getD, getMsb?_eq_getLsb?]
split <;>
· simp
· simp only [getLsb?_eq_getElem?, Bool.and_iff_right_iff_imp, decide_eq_true_eq,
Option.getD_none, Bool.and_eq_false_imp]
intros
omega

Expand Down Expand Up @@ -303,7 +304,7 @@ theorem getElem?_zero_ofNat_one : (BitVec.ofNat (w+1) 1)[0]? = some true := by

-- This does not need to be a `@[simp]` theorem as it is already handled by `getElem?_eq_getElem`.
theorem getElem?_zero_ofBool (b : Bool) : (ofBool b)[0]? = some b := by
simp [ofBool, cond_eq_if]
simp only [ofBool, ofNat_eq_ofNat, cond_eq_if]
split <;> simp_all

@[simp] theorem getElem_zero_ofBool (b : Bool) : (ofBool b)[0] = b := by
Expand Down Expand Up @@ -332,7 +333,7 @@ theorem getElem_ofBool {b : Bool} {i : Nat} : (ofBool b)[0] = b := by

theorem msb_eq_getLsbD_last (x : BitVec w) :
x.msb = x.getLsbD (w - 1) := by
simp [BitVec.msb, getMsbD, getLsbD]
simp only [BitVec.msb, getMsbD]
rcases w with rfl | w
· simp [BitVec.eq_nil x]
· simp
Expand Down Expand Up @@ -360,7 +361,7 @@ theorem toNat_ge_of_msb_true {x : BitVec n} (p : BitVec.msb x = true) : x.toNat
| 0 =>
simp [BitVec.msb, BitVec.getMsbD] at p
| n + 1 =>
simp [BitVec.msb_eq_decide] at p
simp only [msb_eq_decide, Nat.add_one_sub_one, decide_eq_true_eq] at p
simp only [Nat.add_sub_cancel]
exact p

Expand Down Expand Up @@ -420,7 +421,7 @@ theorem toInt_eq_toNat_bmod (x : BitVec n) : x.toInt = Int.bmod x.toNat (2^n) :=
/-- Prove equality of bitvectors in terms of nat operations. -/
theorem eq_of_toInt_eq {x y : BitVec n} : x.toInt = y.toInt → x = y := by
intro eq
simp [toInt_eq_toNat_cond] at eq
simp only [toInt_eq_toNat_cond] at eq
apply eq_of_toNat_eq
revert eq
have _xlt := x.isLt
Expand Down Expand Up @@ -900,8 +901,8 @@ theorem not_def {x : BitVec v} : ~~~x = allOnes v ^^^ x := rfl
rw [← h]
rw [Nat.testBit_two_pow_sub_succ (isLt _)]
· cases w : decide (i < v)
· simp at w
simp [w]
· simp only [decide_eq_false_iff_not, Nat.not_lt] at w
simp only [Bool.false_bne, Bool.false_and]
rw [Nat.testBit_lt_two_pow]
calc BitVec.toNat x < 2 ^ v := isLt _
_ ≤ 2 ^ i := Nat.pow_le_pow_of_le_right Nat.zero_lt_two w
Expand Down Expand Up @@ -1041,7 +1042,8 @@ theorem shiftLeft_or_distrib (x y : BitVec w) (n : Nat) :
simp only [t]
simp only [decide_True, Nat.sub_sub, Bool.true_and, Nat.add_assoc]
by_cases h₁ : k < w <;> by_cases h₂ : w - (1 + k) < i <;> by_cases h₃ : k + i < w
<;> simp [h₁, h₂, h₃]
<;> simp only [h₁, h₂, h₃, decide_False, h₂, decide_True, Bool.not_true, Bool.false_and, Bool.and_self,
Bool.true_and, Bool.false_eq, Bool.false_and, Bool.not_false]
<;> (first | apply getLsbD_ge | apply Eq.symm; apply getLsbD_ge)
<;> omega

Expand Down Expand Up @@ -1496,26 +1498,26 @@ theorem getLsbD_append {x : BitVec n} {y : BitVec m} :
simp only [append_def, getLsbD_or, getLsbD_shiftLeftZeroExtend, getLsbD_setWidth']
by_cases h : i < m
· simp [h]
· simp [h]; simp_all
· simp_all [h]

theorem getElem_append {x : BitVec n} {y : BitVec m} (h : i < n + m) :
(x ++ y)[i] = bif i < m then getLsbD y i else getLsbD x (i - m) := by
simp only [append_def, getElem_or, getElem_shiftLeftZeroExtend, getElem_setWidth']
by_cases h' : i < m
· simp [h']
· simp [h']; simp_all
· simp_all [h']

@[simp] theorem getMsbD_append {x : BitVec n} {y : BitVec m} :
getMsbD (x ++ y) i = bif n ≤ i then getMsbD y (i - n) else getMsbD x i := by
simp [append_def]
simp only [append_def]
by_cases h : n ≤ i
· simp [h]
· simp [h]

theorem msb_append {x : BitVec w} {y : BitVec v} :
(x ++ y).msb = bif (w == 0) then (y.msb) else (x.msb) := by
rw [← append_eq, append]
simp [msb_setWidth']
simp only [msb_or, msb_shiftLeftZeroExtend, msb_setWidth']
by_cases h : w = 0
· subst h
simp [BitVec.msb, getMsbD]
Expand Down Expand Up @@ -1636,13 +1638,13 @@ theorem shiftRight_shiftRight {w : Nat} (x : BitVec w) (n m : Nat) :

theorem getLsbD_rev (x : BitVec w) (i : Fin w) :
x.getLsbD i.rev = x.getMsbD i := by
simp [getLsbD, getMsbD]
simp only [getLsbD, Fin.val_rev, getMsbD, Fin.is_lt, decide_True, Bool.true_and]
congr 1
omega

theorem getElem_rev {x : BitVec w} {i : Fin w}:
x[i.rev] = x.getMsbD i := by
simp [getMsbD]
simp only [Fin.getElem_fin, Fin.val_rev, getMsbD, Fin.is_lt, decide_True, Bool.true_and]
congr 1
omega

Expand All @@ -1667,13 +1669,13 @@ theorem toNat_cons' {x : BitVec w} :

theorem getLsbD_cons (b : Bool) {n} (x : BitVec n) (i : Nat) :
getLsbD (cons b x) i = if i = n then b else getLsbD x i := by
simp only [getLsbD, toNat_cons, Nat.testBit_or]
rw [Nat.testBit_shiftLeft]
simp only [getLsbD, toNat_cons, Nat.testBit_or, Nat.testBit_shiftLeft, ge_iff_le]
rcases Nat.lt_trichotomy i n with i_lt_n | i_eq_n | n_lt_i
· have p1 : ¬(n ≤ i) := by omega
have p2 : i ≠ n := by omega
simp [p1, p2]
· simp [i_eq_n, testBit_toNat]
· simp only [i_eq_n, ge_iff_le, Nat.le_refl, decide_True, Nat.sub_self, Nat.testBit_zero,
Bool.true_and, testBit_toNat, getLsbD_ge, Bool.or_false, ↓reduceIte]
cases b <;> trivial
· have p1 : i ≠ n := by omega
have p2 : i - n ≠ 0 := by omega
Expand All @@ -1687,7 +1689,8 @@ theorem getElem_cons {b : Bool} {n} {x : BitVec n} {i : Nat} (h : i < n + 1) :
· have p1 : ¬(n ≤ i) := by omega
have p2 : i ≠ n := by omega
simp [p1, p2]
· simp [i_eq_n, testBit_toNat]
· simp only [i_eq_n, ge_iff_le, Nat.le_refl, decide_True, Nat.sub_self, Nat.testBit_zero,
Bool.true_and, testBit_toNat, getLsbD_ge, Bool.or_false, ↓reduceIte]
cases b <;> trivial
· have p1 : i ≠ n := by omega
have p2 : i - n ≠ 0 := by omega
Expand Down Expand Up @@ -1952,7 +1955,7 @@ theorem toInt_neg {x : BitVec w} :
Int.bmod_add_cancel]
by_cases h : x.toNat < ((2 ^ w) + 1) / 2
· rw [Int.bmod_pos (x := x.toNat)]
all_goals simp [toNat_mod_cancel', h]
all_goals simp only [toNat_mod_cancel']
norm_cast
· rw [Int.bmod_neg (x := x.toNat)]
· simp only [toNat_mod_cancel']
Expand All @@ -1966,7 +1969,7 @@ theorem toInt_neg {x : BitVec w} :

theorem sub_toAdd {n} (x y : BitVec n) : x - y = x + - y := by
apply eq_of_toNat_eq
simp
simp only [toNat_sub, toNat_add, toNat_neg, Nat.add_mod_mod]
rw [Nat.add_comm]

@[simp] theorem neg_zero (n:Nat) : -BitVec.ofNat n 0 = BitVec.ofNat n 0 := by apply eq_of_toNat_eq ; simp
Expand Down
Loading